首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current methods of platelet storage are unsatisfactory because of the short shelf life of platelets and the rapid loss of platelet viability. We have developed a cryopreservation method that results in less damage from freezing and higher recovered function of platelets. Platelets were cryopreserved using a combination of epinephrine (EPN) and dimethyl sulfoxide (Me(2)SO) as cryoprotectants. The response of platelets to agonists was studied by flow cytometry and aggregation tests. Cryopreserving platelets with Me(2)SO decreased platelet annexin V binding due to freezing. The combination of EPN with Me(2)SO enhanced Me(2)SO cryoprotection and decreased platelet microparticle generation, suggesting that cryopreserving platelets using this combination is associated with increased platelet integrity. Platelet cryopreservation with an Me(2)SO/EPN combination also increased platelet aggregability, which was demonstrated by decreasing the lag phase and increasing the aggregation density to 66.39% +/- 6.6 that of fresh platelet-rich plasmas. We conclude that adding EPN as a combined cryoprotectant improves the quality of Me(2)SO-frozen platelets. As a method of aggregation of cryopreserved platelets, this method is comparable to that of normal fresh platelets and may improve the conditions for platelet transfusion.  相似文献   

2.
Platelets were activated with freezing/thawing and thrombin stimulation, and platelet microparticles generated following platelet activation were isolated with ultracentrifugation. The effects of platelet microparticles on platelet activation were studied with annexin V assay, protein tyrosine phosphorylation, and platelet aggregation. Freezing-induced platelet microparticles decreased but thrombin-induced platelet microparticles increased platelet annexin V binding and aggregation. Freshly washed platelets were cryopreserved using epinephrine and dimethyl sulfoxide (Me(2)SO) as combined cryoprotectants, and stimulated with thrombin-induced platelet microparticles. Following incubation of thrombin-induced platelet microparticles, the reaction time of platelets to agonists decreased but the percentages of aggregation increased, such as washed platelets from 44% +/- 30 to 92% +/- 7, p < 0.001, and cryopreserved platelets from 66% +/- 10 to 77% +/- 7, p < 0.02. By increasing platelet aggregability, platelet microparticles recovered after thrombin stimulation improved platelet function for transfusion. A 53-kDa platelet microparticle protein showed little phosphorylation if it was released from resting platelets or platelets stimulated with ADP, epinephrine, propyl gallate or dephosphorylation if it was derived from ionophore A 23187-stimulated platelets. However, the same protein released from frozen platelets showed significant tyrosine phosphorylation. Since a microparticle protein with 53 kDa was compatible with protein tyrosine phosphatase-1B (PTP-1B), its phosphorylation suggests the inhibition of enzyme activity. The microparticle proteins derived from thrombin-stimulated platelets were significantly phosphorylated at 64 kDa and pp60c-src, suggesting that the activation of tyrosine kinases represents a possible mechanism of thrombin-induced platelet microparticles to improve platelet aggregation.  相似文献   

3.
In blood banks, platelets are stored at 20–24°C, which limits the maximum time they can be stored. Platelets are chilling sensitive, and they activate when stored at temperatures below 20°C. Cryopreservation could serve as an alternative method for long term storage of platelet concentrates. Recovery rates using dimethyl sulfoxide (DMSO) as cryoprotective agent, however, are low, and removal of DMSO is required before transfusion. In this study, we have explored the use of trehalose for cryopreservation of human platelets while using different cooling rates. Recovery of membrane intact cells and the percentage of nonactivated platelets were used as a measure for survival. In all cases, survival was optimal at intermediate cooling rates of 20°C min?1. Cryopreservation using DMSO resulted in high percentages of activated platelets; namely 54% of the recovered 94%. When using trehalose, 98% of the platelets had intact membranes after freezing and thawing, whereas 76% were not activated. Using Fourier transform infrared spectroscopy, subzero membrane phase behavior of platelets has been studied in the presence of trehalose and DMSO. Furthermore, membrane hydraulic permeability parameters were derived from these data to predict the cell volume response during cooling. Both trehalose and DMSO decrease the activation energy for subzero water transport across cellular membranes. Platelets display a distinct lyotropic membrane phase transition during freezing, irrespective of the presence of cryoprotective agents. We suggest that concomitant uptake of trehalose during freezing could explain the increased survival of platelets cryopreserved with trehalose. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

4.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

5.
Anti-human platelet p24/CD9 (p24/monoclonal antibody 7) causes the activation of platelets and in the presence of calcium induces platelet aggregation. Our studies suggest that platelet response to this antibody is mediated at least in part by the pertussis toxin-sensitive guanine nucleotide-binding proteins (G proteins) that stimulate phosphoinositide hydrolysis and inhibit adenylate cyclase. Prior exposure of saponin-treated platelets to anti-p24/CD9 inhibited the [32P] ADP-ribosylation of the alpha 41 protein by pertussis toxin. Platelet aggregation induced by this antibody is preceded by and/or accompanied by accelerated phosphatidylinositol turnover, the generation of inositol phosphates and diacylglycerol (DAG), calcium mobilization, and protein phosphorylation. The production of inositol phosphate(s) was measurable within 15 s of either anti-p24/CD9 or thrombin addition. Within 10 s of antibody addition (10 micrograms/ml), the level of DAG was 200% over that of the control and similar to that observed with 2 units/ml thrombin (201% over that of the control). Therefore, as it appears to be true for thrombin, platelet response upon binding of anti-p24/CD9 is primarily mediated by the activation of phospholipase C. When platelets pretreated with aspirin (200 microM) and apyrase (1 mg/ml) were subsequently exposed to anti-p24/CD9, aggregation still occurred. This indicates that neither secreted ADP nor thromboxane generation is required for this aggregation response. Using indo-1 and ratio cytofluorometry, we observed that an increase in platelet cytosolic calcium is a relatively early event and occurs in either the presence or absence of calcium in the external media. Phosphorylation studies of platelet proteins showed that anti-p24/CD9 binding to platelets caused increased phosphorylation of four proteins with apparent molecular masses of 50,000, 47,000, 36,000, and 20,000 daltons. These studies suggest that platelet activation mediated by the surface protein p24/CD9 is mainly through the stimulation of a phospholipase C, the activation of which is responsible for the generation of second messengers inositol trisphosphate and DAG.  相似文献   

6.
Aggregation of rat platelets, when stimulated by adenosine diphosphate (ADP) or fluoride, is impaired by zinc deficiency, and the defect is associated with a decreased uptake of external Ca2+. Zinc deficiency also impairs the aggregatory response of platelets to phorbol myristate acetate (PMA), an activator of protein kinase C, but low zinc status decreases the PMA response only when calcium is added to the external medium. The purpose of this study was to determine the role of protein kinase C in rat platelet function and its relationship to the zinc deficiency pathology observed in platelets stimulated by thrombin (THR). The percent of maximal aggregation and the concentration of cytosolic-free Ca2+ were measured in washed platelets stimulated by THR and PMA. For the protein kinase C experiments platelets were obtained from rats fed a grain-based diet, and for the thrombin experiments they were from rats fed purified diets. In the latter experiments, immature male rats were fed for 2 weeks a low zinc diet (<1 mg/kg) ad libitum or a zinc adequate (100 mg/kg) diet either ad libitum or pair-fed. Zinc deficiency impaired the aggregation of platelets stimulated by 0.045 U/mL of THR by approximately 40%, and the external calcium uptake (0.03 U/mL of THR) was decreased by approximately 30%. Staurosporine, a protein kinase C inhibitor, decreased thrombin-induced aggregation in a concentration-dependent manner, but it had no effect on the external calcium uptake. While PMA had a synergistic effect with thrombin in the stimulation of platelet aggregation, it actually decreased the cytosolic-free calcium response to thrombin. It is concluded that zinc deficiency impairs thrombin-stimulated platelet aggregation and calcium uptake and that protein kinase C activity is essential for rat platelet aggregation. Protein kinase C does not stimulate calcium uptake and must act downstream of the calcium uptake defect. A model of rat platelet activation is presented depicting impaired Ca2+ uptake as the primary defect in zinc deficiency.  相似文献   

7.
Thrombin and ADP-induced platelet aggregation are reversibly inhibited by pyridoxal phosphate. Sodium borohydride converts Schiff bases formed between pyridoxal phosphate and amino groups to covalent bonds. When platelets treated with sodium borohydride and pyridoxal phosphate are resuspended in fresh platelet-poor plasma, they recover their response to thrombin, but not to ADP. Thus Schiff base formation between pyridoxal phosphate and platelet surface amino groups does not block thrombin aggregation. The loss of thrombin potency as an aggregating agent is due to interaction between pyridoxal phosphate and thrombin. This is evidenced by spectrophometric determination of adduct formation and loss of hydrolytic action on p-tosyl-L-arginine methyl ester.  相似文献   

8.
The activation of plasmin from its circulating precursor plasminogen is the mechanism of several clot-busting drugs used to clinically treat patients who have suffered a stroke; however, plasmin thus generated has been shown to activate platelets directly. There has been speculation as to whether plasmin interacts with the protease-activated receptors (PARs) because of its similarity in amino acid specificity with the classic platelet activator thrombin. We have investigated whether plasmin activates platelets via PAR activation through multiple complementary approaches. At concentrations sufficient to induce human platelet aggregation, plasmin released very little calcium compared with that induced by thrombin, the PAR-1 agonist peptide SFLLRN, or the PAR-4 agonist peptide AYPGKF. Stimulation of platelets with plasmin initially failed to desensitize additional stimulation with SFLLRN or AYPGKF, but a prolonged incubation with plasmin desensitized platelets to further stimulation by thrombin. The desensitization of PAR-1 had no effect on plasmin-induced platelet aggregation and yielded an aggregation profile that was similar to plasmin in response to a low dose of thrombin. However, PAR-4 desensitization completely eliminated aggregation in response to plasmin. Inclusion of the PAR-1-specific antagonist BMS-200261 inhibited platelet aggregation induced by a low dose of thrombin but not by plasmin. Additionally, mouse platelets naturally devoid of PAR-1 showed a full aggregation response to plasmin in comparison to thrombin. Furthermore, human and mouse platelets treated with a PAR-4 antagonist, as well as platelets isolated from PAR-4 homozygous null mice, failed to aggregate in response to plasmin. Finally, a protease-resistant recombinant PAR-4 was refractory to activation by plasmin. We conclude that plasmin induces platelet aggregation primarily through slow cleavage of PAR-4.  相似文献   

9.
Platelets were harvested by a Hemonetics Model-30 discontinuous cell separator from 20 normal volunteers and were cryopreserved in the presence of 5% DMSO at a controlled rate of freezing of -1 degrees C/min and stored in liquid nitrogen for up to 3 months. A significant loss of platelets occurred at the platelet concentration step through adhesion of platelets to the bag walls. A small reduction in aggregation associated with this was also seen and may reflect some damage to the platelets during the pheresis procedure. A small, but significant loss of platelet aggregation was seen with all agents following cryopreservation. Mean percentage aggregation post-thaw for all the agents was 75.4% (range 74-78%) and platelet recovery was approximately 90%. No significant changes in aggregation or recovery were seen over the 3 months' storage period. The cryoprotectant DMSO was shown to have no deleterious effect on platelet function in vitro.  相似文献   

10.
Characterization of the normal bovine platelet aggregation response   总被引:4,自引:0,他引:4  
1. Bovine platelets are more sensitive to stimulation by platelet activating factor (PAF) than adenosine-di-phosphate (ADP) or thrombin. 2. While epinephrine, arachidonic acid and serotonin are ineffective by themselves as aggregatory stimulants of bovine platelets they enhance the aggregation response of other platelet agonists. 3. There is no correlation between thromboxane A2 production and release and the extent of platelet aggregation in bovine platelets. 4. The dependence of bovine platelet aggregation on a phospholipid pathway and calcium mobilization is indicated.  相似文献   

11.
The influence of inductors and inhibitors of platelet aggregation on certain functional properties and structural peculiarities of platelets are investigated. Inductors of aggregation, such as ADP and thrombin, will cause the calcium binding to the platelet membrane to be diminished, whereas inhibitory substances of platelet aggregation will cause an increase of calcium binding. Inductors increase the number of partially degranulated platelets. Inhibitors, such as triphtazin and papaverin, inhibit these morphological changes.  相似文献   

12.
Antiplatelet effect of butylidenephthalide   总被引:1,自引:0,他引:1  
Butylidenephthalide inhibited, in a dose-dependent manner, the aggregation and release reaction of washed rabbit platelets induced by collagen and arachidonic acid. Butylidenephthalide also inhibited slightly the platelet aggregation induced by PAF and ADP, but not that by thrombin or ionophore A23187. Thromboxane B2 formation caused by collagen, arachidonic acid, thrombin and ionophore A23187 was in each case markedly inhibited by butylidenephthalide. Butylidenephthalide inhibited the aggregation of ADP-refractory platelets, thrombin-degranulated platelets, chymotrypsin-treated platelets and platelets in the presence of creatine phosphate/creatine phosphokinase. Its inhibition of collagen-induced aggregation was more marked at lower Ca2+ concentrations in the medium. The aggregability of platelets inhibited by butylidenephthalide could be recovered after the washing of platelets. In human platelet-rich plasma, butylidenephthalide and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine. Prostaglandin E2 formed by the incubation of guinea-pig lung homogenate with arachidonic acid could be inhibited by butylidenephthalide, indomethacin and aspirin. It is concluded that the antiplatelet effect of butylidenephthalide is mainly due to an inhibitory effect on cyclo-oxygenase and may be due partly to interference with calcium mobilization.  相似文献   

13.
In stimulated human platelets dense-granule secretion in response to the 'weak agonists' ADP, adrenaline, platelet activating factor and low concentrations of thrombin as well as Ca2+ mobilisation in response to thrombin are enhanced by a Na+/H+ exchanger. In the present study the role of this antiport in collagen stimulated human platelets was examined. While stimulation of platelets loaded with the fluorescent intracellular pH-sensitive dye, bis-carboxyethyl-5-(6)-carboxyfluorescein (BCECF) with thrombin resulted in the activation of the Na+/H+ exchanger, activation of this antiport did not occur in collagen-stimulated platelets. The lack of antiport activity in response to collagen using BCECF-loaded platelets correlated with the lack of any functional role of the antiport in collagen stimulated platelets. In the presence of a Na+/H+ exchange inhibitor, ethylisopropylamiloride, neither collagen-induced platelet aggregation or dense-granule secretion was affected. Furthermore, while the removal of extracellular Na+ (Na+ext), a condition that also prevents activation of the antiport, inhibited dense-granule secretion in response to a low concentration of thrombin, collagen-induced secretion was potentiated. This potentiatory effect could not be attributed to changes in either the membrane potential or in collagen-induced phospholipase C or protein kinase C activity. The present results indicate that in contrast to the 'weak agonists' (1) collagen-induced platelet activation does not require activation of the Na+/H+ exchanger and (2) Na+ext per se is an inhibitor of collagen-induced secretion.  相似文献   

14.
The initial step in the interaction of thrombin with human platelets in binding of the enzyme to the platelet surface. The effects of digestion of isolated platelets with trypsin and neuraminidase on aggregation, release of serotonin and binding of thrombin have been examined.Trypsin is a powerful inducer of platelet aggregation as well as the release reaction. The aggregation effect of trypsin may be blocked with disodium ehtylenediaminetatraacetate (EDTA). Further, in the presence of EDTA, trypsin-induced release of [14C]serotonin is 15–20% lower compared to controls and the initial lag period is prolonged. Conditions were developed under which trypsin did neither aggregate nor release serotonin from platelets. Even under these conditions, trypsin caused a profound loss in the thrombin binding capacity of platelets. Thus, the trypsin-induced fall in the thrombin binding capacity and the platelet response are dissociated. This loss in the thrombin binding by trypsin is due to a lower number of binding sites available on the platelet surface and is not due to an altered affinity.Neuraminidase did not induce platelet aggregation or the release reaction. The ability of platelets to bind thrombin was also unimpaired by prior digestion with neuraminidase. Thus, the sialic acid at the platelet surface is not essential in the function of thrombin recognition by the receptor. This moiety may nontheless be a constituent of a glycoprotein which might act as the thrombin receptor.  相似文献   

15.
Membrane microenvironmental changes associated with thrombin-induced platelet activation were followed by fluorescence intensity and polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled human platelets. The labeling of washed platelets with DPH did not alter platelet intactness and morphology. In response to thrombin, DPH-labeled platelets exhibited reduced serotonin release, yet aggregation was barely inhibited. Shape change induced by thrombin or ADP was indistinguishable in control and in DPH-labeled platelets. During platelet aggregation induced by thrombin, fluorescence intensity increased by about 14%, which may indicate a more hydrophobic exposure of the probe. However, no change in fluorescence was detected during platelet shape change, induced either by thrombin in presence of EDTA or by ADP. Thrombin-activated platelets exhibited an increase in values of fluorescence polarization (P) during the stages of shape change and secretion, which further increased during aggregation. A similar pattern of increase in P values characterized platelet shape changes, caused either by thrombin in the presence of EDTA or by ADP. Changes in individual platelets are discernible from the alterations of the aggregating cells. These results may indicate that platelet activation is accompanied by an increase in rigidity of the membrane lipids. Functionally, the elevated "microviscosity" may reflect a primary role of membrane lipids in modulating the process of platelet activation or secondary transitions in lipids due to membrane events mediated by proteins.  相似文献   

16.
Calcium is a cofactor of human platelet aggregation. Moreover a direct correlation between the ability of platelets to bind this divalent cation and to aggregate has been demonstrated. Since magnesium can substitute for calcium in supporting aggregation, especially in the presence of low calcium concentrations, and platelet aggregation is inhibited at low pH, the present study was designed to examine the effects of magnesium and low pH on 45calcium binding to human platelets, and to determine whether such effects might be associated with calcium binding to glycoproteins I (GPI) or IIb/IIIa (GPIIb/IIIa), the putative fibrinogen receptor. 45Calcium binding to aspirin-treated platelets that had been depleted of surface-associated calcium by brief exposure to EDTA was evaluated. Magnesium (5-10 mM) or a change in hydrogen ion concentration to decrease the pH from 7.5 to 6.0 was found to inhibit the binding of 45calcium to platelets from healthy donors by 34 +/- 6 and 32 +/- 8% (mean +/- SD, n = 13), respectively. Similar results were obtained with platelets incubated with chymotrypsin to selectively remove GPI or platelets from a patient with the Bernard Soulier Syndrome, congenitally deficient in GPI. In contrast, calcium binding to platelets from two patients with thrombasthenia, lacking GPIIb/IIIa, was reduced 49 +/- 6% and 42 +/- 8% (n = 4) by magnesium and hydrogen ions, respectively. This apparently increased inhibition was attributed to the combined effects of an overall decrease (approximately 50%) in calcium binding to thrombasthenic platelets compared with that in control platelets, and a similar absolute reduction in calcium binding in the presence of magnesium and/or hydrogen ions. No additional inhibition of 45calcium binding was noted in the presence of magnesium and at low pH, indicating that magnesium and hydrogen ions may affect the same platelet membrane binding sites. The data suggest that although modulation of platelet aggregation by magnesium and pH is accompanied by changes in platelet-associated calcium, calcium binding to the three major platelet membrane glycoproteins, GPI, IIb, and IIIa is unaffected.  相似文献   

17.
Using the current blood bank storage conditions at 22 degrees C, the viability and function of human platelets can be maintained for only 5 days. This does not allow for the necessary and extensive banking of platelets needed to treat patients afflicted with thrombocytopenia, a side effect of many invasive surgeries such as cardiopulmonary bypass or bone marrow transplantation. The development of optimal techniques for long-term cryopreservation and banking of human platelets would provide the ability to greatly extend the viable life of the platelet and would fulfill an increasing and urgent need in many clinical applications. To determine the optimal techniques for platelet preservation, the expression of an activation marker, phosphatidylserine, on the platelet membrane during storage at 22 and 8 degrees C as well as during the different freezing preservation processes was examined using flow cytometry and annexin V binding assay. Human platelets were identified by both CD41 and light scatter in flow cytometry. In cryopreservation experiments, effects of the following factors on platelet activation were evaluated: (a) cryoprotective agents (CPAs) type: dimethyl sulfoxide (Me2SO), ethylene glycol (EG), and propylene glycol (PG), (b) CPA concentration ranging from 0 to 3 M, and (c) ending temperatures of a slow cooling process at -1 degrees C/min. Our results demonstrated that (a) approximately 50% of platelets were activated on days 7 and 16 at 22 and 8 degrees C, respectively; (b) platelets were not significantly activated after 30-min exposure to 1 M Me2SO, EG, and PG at 22 degrees C, respectively, and (c) there was a significant difference in cryoprotective efficacy among these three CPAs in preventing platelets from cryoinjury. After being cooled to -10 degrees C, 74% of the cryopreserved platelets survived (nonactivated) in 1 M Me2SO solution, while in 1 M EG and 1 M PG solutions, 62 and 42% of the platelets survived, respectively. Using the information that Me2SO consistently yields higher percentages of nonactivated platelets and does not seem to be cytotoxic to platelets for 30-min exposure time, this was found to be the optimal cryoprotective agent for platelets. In addition, significant Me2SO toxicity to platelets was not noted until Me2SO concentrations exceeded 2 M. Finally, a concentration of 1 M Me2SO proved to be the most effective at all cryopreservation ending temperatures tested (-10, -30, -60, and -196 degrees C). In conclusion, under the present experimental conditions, a storage temperature of 8 degrees C appeared to be much better than 22 degrees C. Although the potential chemical toxicity of 1 M Me2SO, EG, or PG is negligible, 1 M Me2SO was found to be optimum for cryopreservation of human platelets. PG has the least cryoprotective function for low-temperature platelet survival.  相似文献   

18.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

19.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

20.
It was found that human platelets possess a high sensitivity towards alpha-thrombin (Km = 2 nM). Modified thrombin forms (beta/gamma-thrombin) with an impaired recognition site of high molecular weight substrates and DIP-alpha-thrombin and trypsin are incapable of inducing platelet aggregation when taken at concentrations corresponding to effective concentrations of alpha-thrombin. Beta/gamma-Thrombin and trypsin, unlike DIP-alpha-thrombin, cause platelet aggregation at concentrations of 100-200 nM. Studies on the modulating effects of modified thrombin forms, alpha-thrombin and trypsin, on platelet aggregation induced by alpha-thrombin revealed that beta/gamma-thrombin, alpha-thrombin and trypsin at concentrations causing no cell aggregation potentiate the platelet response after 2 min incubation and inhibit platelet aggregation upon prolonged (15 min) incubation. However, DIP-alpha-thrombin, irrespective of the incubation time (up to 30 min) increased the sensitivity of platelets to alpha-thrombin-induced aggregation. The activating effect of DIP-alpha-thrombin is characterized by an equilibrium constant (KA) of 17 nM. The experimental data confirm the hypothesis that the necessary prerequisite for an adequate physiological response of platelets to alpha-thrombin is the maintenance in the thrombin molecule of an intact active center and a recognition site for high molecular weight substrates. The specificity of thrombin as a potent platelet aggregation inducer is determined by the recognition site for high molecular weight substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号