首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two genes (mtmD and mtmE) were cloned and sequenced from the mithramycin producer Streptomyces argillaceus. Comparison with proteins in databases and enzymatic assays after expression in Escherichia coli showed that they encode a glucose-1-phosphate:TTP thymidylyl transferase and a TDP-D-glucose 4,6-dehydratase, respectively. The mtmD gene was inactivated by gene replacement, generating a nonproducing mutant that accumulates a tetracyclic compound designated premithramycinone. The identification of premithramycinone reveals new aspects of the mithramycin biosynthetic pathway and suggests that at least some glycosylations occur before breakage of the fourth ring.  相似文献   

2.
Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in nonproducing mutants, which were generated by insertional inactivation of these genes. The mtm V gene codes for a 2,3-dehydratase that catalyzes early and common steps in the biosynthesis of the three sugars found in mithramycin (D-olivose, D-oliose and D-mycarose); its inactivation caused the accumulation of the nonglycosylated intermediate premithramycinone. The mtmU gene codes for a 4-ketoreductase involved in D-oliose biosynthesis, and its inactivation resulted in the accumulation of premithramycinone and premithramycin A , the first glycosylated intermediate which contains a D-olivose unit. The third gene, mtmC, is involved in D-mycarose biosynthesis and codes for a C-methyltransferase. Two mutants with lesions in the mtmC gene accumulated mithramycin intermediates lacking the D-mycarose moiety but containing D-olivose units attached to C-12a in which the 4-keto group is unreduced. This suggests that mtmC could code for a second enzyme activity, probably a D-olivose 4-ketoreductase, and that the glycosyltransferase responsible for the incorporation of D-olivose (MtmGIV) shows some degree of flexibility with respect to its sugar co-substrate, since the 4-ketoanalog is also transferred. A pathway is proposed for the biosynthesis of the three sugar moieties in mithramycin.  相似文献   

3.
A monooxygenase encoded by the mtmOIV gene from the mithramycin gene cluster of Streptomyces argillaceus was purified 21-fold by a three-step purification procedure. This monooxygenase catalyzes the oxidative cleavage of the fourth ring of premithramycin B. The enzyme was dependent on NADPH and flavin adenine dinucleotide for activity with optimal pH at 9.5, and the K(m) values for NADPH and premithramycin B were 269.22 and 23.35 micro M, respectively. The reaction catalyzed by MtmOIV yields two possible isomers of the same basic shortened aliphatic chain molecule. One of the reaction products showed important biological activity, thus highlighting the importance of the cleavage of the fourth ring of the aglycon for biological activity.  相似文献   

4.
Streptomyces reticuli harbors an msiK gene which encodes a protein with an amino acid identify of 90% to a corresponding protein previously identified in Streptomyces lividans. Immunological studies revealed that S. lividans and S. reticuli synthesize their highest levels of MsiK during growth with cellobiose, but not with glucose. Moreover, moderate amounts of MsiK are produced by both species in the course of growth with maltose, melibiose, and xylose and by S. lividans in the presence of xylobiose and raffinose. In contrast, a recently identified cellobiose-binding protein and its distantly related homolog were only found if S. reticuli or S. lividans, respectively, was cultivated with cellobiose. Uptake of cellobiose and maltose was tested and ascertained for S. reticuli and S. lividans, but not for an msiK S. lividans mutant. However, transformants of this mutant carrying the S. reticuli or S. lividans msiK gene on a multicopy plasmid had regained the ability to transport both sugars. The data show that MsiK assists two ABC transport systems.  相似文献   

5.
A DNA chromosomal region of Streptomyces argillaceus ATCC 12596, the producer organism of the antitumor polyketide drug mithramycin, was cloned. Sequence analysis of this DNA region, located between four mithramycin glycosyltransferase genes, showed the presence of two genes (mtmMI and mtmMII) whose deduced products resembled S-adenosylmethionine-dependent methyltransferases. By independent insertional inactivation of both genes nonproducing mutants were generated that accumulated different mithramycin biosynthetic intermediates. The M3DeltaMI mutant (mtmMI-minus mutant) accumulated 4-demethylpremithramycinone (4-DPMC) which lacks the methyl groups at carbons 4 and 9. The M3DeltaM2 (mtmMII-minus mutant) accumulated 9-demethylpremithramycin A3 (9-DPMA3), premithramycin A1 (PMA1), and 7-demethylmithramycin, all of them containing the O-methyl group at C-4 and C-1', respectively, but lacking the methyl group at the aromatic position. Both genes were expressed in Streptomyces lividans TK21 under the control of the erythromycin resistance promoter (ermEp) of Saccharopolyspora erythraea. Cell-free extracts of these clones were precipitated with ammonium sulfate (90% saturation) and assayed for methylation activity using different mithramycin intermediates as substrates. Extracts of strains MJM1 (expressing the mtmMI gene) and MJM2 (expressing the mtmMII gene) catalyzed efficient transfer of tritium from [(3)H]S-adenosylmethionine into 4-DPMC and 9-DPMA3, respectively, being unable to methylate other intermediates at a detectable level. These results demonstrate that the mtmMI and mtmMII genes code for two S-adenosylmethionine-dependent methyltransferases responsible for the 4-O-methylation and 9-C-methylation steps of the biosynthetic precursors 4-DPMC and 9-DPMA3, respectively, of the antitumor drug mithramycin. A pathway is proposed for the last steps in the biosynthesis of mithramycin involving these methylation events.  相似文献   

6.
在野生型的圈卷产色链霉菌中,增加单个或多个拷贝数的samR,观察该基因对野生株表型和形态的影响。结果表明,samR的拷贝数的增加会使孢子形成提前,但是增加单拷贝的菌株与增加多拷贝的菌株所表现的增效作用相同。在大肠杆菌中对samR进行了GST融合表达和纯化,通过凝胶阻滞实验证明,SamR蛋白可与其上游的调控区特异性结合。由此推测samR是一个自调控基因。  相似文献   

7.
Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.  相似文献   

8.
Anaerobic control of colicin E1 production.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

9.

Mithramycin A is an antitumor compound used for treatment of several types of cancer including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia and Paget’s disease. Selective modifications of this molecule by combinatorial biosynthesis and biocatalysis opened the possibility to produce mithramycin analogues with improved properties that are currently under preclinical development. The mithramycin A biosynthetic gene cluster from Streptomyces argillaceus ATCC12956 was cloned by transformation assisted recombination in Saccharomyces cerevisiae and heterologous expression in Streptomyces lividans TK24 was evaluated. Mithramycin A was efficiently produced by S. lividans TK24 under standard fermentation conditions. To improve the yield of heterologously produced mithramycin A, a collection of derivative strains of S. lividans TK24 were constructed by sequential deletion of known potentially interfering secondary metabolite gene clusters using a protocol based on the positive selection of double crossover events with blue pigment indigoidine-producing gene. Mithramycin A production was evaluated in these S. lividans strains and substantially improved mithramycin A production was observed depending on the deleted gene clusters. A collection of S. lividans strains suitable for heterologous expression of actinomycetes secondary metabolites were generated and efficient production of mithramycin A with yields close to 3 g/L, under the tested fermentation conditions was achieved using these optimized collection of strains.

  相似文献   

10.
Sequencing of a 4.3-kb DNA region from the chromosome of Streptomyces argillaceus, a mithramycin producer, revealed the presence of two open reading frames (ORFs). The first one (orfA) codes for a protein that resembles several transport proteins. The second one (mtmR) codes for a protein similar to positive regulators involved in antibiotic biosynthesis (DnrI, SnoA, ActII-orf4, CcaR, and RedD) belonging to the Streptomyces antibiotic regulatory protein (SARP) family. Both ORFs are separated by a 1.9-kb, apparently noncoding region. Replacement of the mtmR region by an antibiotic resistance cassette completely abolished mithramycin biosynthesis. Expression of mtmR in a high-copy-number vector in S. argillaceus caused a 16-fold increase in mithramycin production. The mtmR gene restored actinorhodin production in Streptomyces coelicolor JF1 mutant, in which the actinorhodin-specific activator ActII-orf4 is inactive, and also stimulated actinorhodin production by Streptomyces lividans TK21. A 241-bp region located 1.9 kb upstream of mtmR was found to be repeated approximately 50 kb downstream of mtmR at the other end of the mithramycin gene cluster. A model to explain a possible route for the acquisition of the mithramycin gene cluster by S. argillaceus is proposed.  相似文献   

11.
By using the promoter-probe plasmid pIJ424, genomic DNA fragments of Actinomadura R39 were shown to have promoter activity in Streptomyces lividans. The same 100-200-copy-number plasmid was used to clone in S. lividans TK24, the gene that encodes the Actinomadura R39 beta-lactamase. Gene cloning resulted in an amplified expression of the beta-lactamase when compared with the amounts of enzyme produced by the original strain (1 mg versus 0.008 mg.litre of culture-1).  相似文献   

12.
Abstract The cryptic multicopy plasmid designated pSLG33 (2.65 kb) was isolated from the vegetative mycelium of Streptomyces lavendulae-grasserius RIA 746 and physically characterized. pRS410 vector (5.4 kb) was constructed by insertion of aph and tsr genes coding for neomycin and thiostrepton resistance, respectively, in a non-essential part of the plasmid molecule. The pRS410 is compatible with multicopy Streptomyces plasmid vectors derived from pIJ101 plasmid.  相似文献   

13.
Mithramycin is an aromatic antitumour polyketide synthesized by Streptomyces argillaceus. Two chromosomal regions located upstream and downstream of the locus for the mithramycin type II polyketide synthase were cloned and sequenced. Analysis of the sequence revealed the presence of eight genes encoding three oxygenases (mtmOI, mtmOII and mtmOIII), three reductases (mtmTI, mtmTII and mtmTIII), a cyclase (mtmY) and an acyl CoA ligase (mtmL). The three oxygenase genes were each inactivated by gene replacement. Inactivation of one of them (mtmOII) generated a non-producing mutant, while inactivation of the other two (mtmOI and mtmOIII) did not affect the biosynthesis of mithramycin. The mtmOII gene may code for an oxygenase responsible for the introduction of oxygen atoms at early steps in the biosynthesis of mithramycin leading to 4-demethylpremithramycinone. One of the reductases may be responsible for reductive cleavage of an intermediate from an enzyme and another for the reduction of a keto group in the side-chain of the mithramycin aglycon moiety. A hypothetical biosynthetic pathway showing in particular the involvement of oxygenase MtmOII and of various other gene products in mithramycin biosynthesis is proposed. Received: 13 August 1998 / Accepted: 30 October 1998  相似文献   

14.
15.
We have isolated two unlinked yeast genes complementing the cell division cycle mutant cdc25-1, one containing the wild type allele CDC25 and the other acting as an extragenic suppressor of the cdc25-1 lesion if present on a multicopy plasmid. Nucleotide sequence analysis of the suppressor gene has revealed an open reading frame that encodes a 45,000-dalton protein belonging to the protein kinase family. The cdc25-suppressing protein kinase (PK-25) shows 48% sequence similarity to the catalytic subunit (CA) of mammalian cAMP-dependent protein kinase and 27-31% similarity to cyclic nucleotide-independent enzymes, including the yeast CDC28 gene product. The PK-25 gene was targeted by integrative transformation into a chromosomal region unlinked to the CYR2 site, the structural gene of CA. The cdc25-suppressing protein kinase is also functionally different from CA, since cyr2 strains deficient in the free catalytic subunit remain temperature sensitive if transformed with a multicopy plasmid containing the PK-25 gene. Furthermore, a deficiency of the cAMP-binding regulatory subunit (RA) caused by the bcy1 mutation fails to suppress the cdc25 mutation, indicating that PK-25 does not interact with the cAMP receptor protein. Our data suggest that the cdc25 suppressor gene encodes a cAMP-independent protein kinase involved in the control of the cell cycle start.  相似文献   

16.
17.
Linear plasmids and chromosomes of Streptomyces carry terminal proteins (TPs) covalently attached to the 5' ends of the DNA. Most known telomeres are conserved in primary sequence and in the potential secondary structures formed during replication. The TP that caps these telomeres is also highly conserved and its coding gene, tpg, is present in all Streptomyces chromosomes and some linear plasmids. Linear plasmid SCP1 contains atypical telomere sequences and no tpg homologue, and can replicate in the absence of tpg, suggesting that it carries a novel TP gene. To isolate the TP on the SCP1 telomeres, we constructed a multicopy mini-SCP1 plasmid. The TP capping the plasmid was isolated and subjected to tryptic digestion and mass spectrometric analysis, and the results indicated that the TP was encoded by an open reading frame (ORF), SCP1.127 (tpc), on SCP1. Of the two ORFs upstream of tpc, SCP1.125 (tac) but not SCP1.126 was essential for replication of mini-SCP1. The Tac-Tpc system of SCP1 represents a convergently evolved novel telomere-capping system of Streptomyces linear replicons.  相似文献   

18.

We previously developed an efficient deletion system for streptomycetes based on the positive selection of double-crossover events using bpsA, a gene for producing the blue pigment indigoidine. Using this system, we removed interfering secondary metabolite clusters from Streptomyces lividans TK24, resulting in RedStrep strains with dramatically increased heterologous production of mithramycin A (up to 3-g/l culture). This system, however, required a time-consuming step to remove the resistance marker genes. In order to simplify markerless deletions, we prepared a new system based on the plasmid pAMR18A. This plasmid contains a large polylinker with many unique restriction sites flanked by apramycin and kanamycin resistance genes and the bpsA gene for selecting a double-crossover event. The utility of this new markerless deletion system was demonstrated by its deletion of a 21-kb actinorhodin gene cluster from Streptomyces lividans TK24 with 30% efficiency. We used this system to efficiently remove the matA and matB genes in selected RedStrep strains, resulting in biotechnologically improved strains with a highly dispersed growth phenotype involving non-pelleting small and open mycelia. No further increase in mithramycin A production was observed in these new RedStrep strains, however. We also used this system for the markerless insertion of a heterologous mCherry gene, an improved variant of the monomeric red fluorescent protein, under the control of the strong secretory signal sequence of the subtilisin inhibitor protein, into the chromosome of S. lividans TK24. The resulting recombinant strains efficiently secreted mCherry into the growth medium in a yield of 30 mg/l.

  相似文献   

19.
We report here the cloning of a Streptomyces lividans gene that when introduced on a multicopy plasmid vector reversed the pigment deficiency phenotype of several distinct mutants blocked in development, pigment production, or both. Although this gene was shown by restriction enzyme analysis to be similar to a previously cloned afsB-complementing gene of Streptomyces coelicolor, we show that it does not correspond to the S. coelicolor chromosomal locus designated afsB. Thus, the cloned locus, which we propose to rename afsR, appears to complement the AfsB- phenotype by pleiotropic regulatory effects.  相似文献   

20.
Phosphinothricyl-alanyl-alanine (PTT), also known as bialaphos, contains phosphinothricin, a potent inhibitor of glutamine synthetase (GS). A 2.75-kilobase NcoI fragment of the Streptomyces viridochromogenes PTT-resistant mutant ES2 cloned on a multicopy vector mediated PTT resistance to S. lividans and to S. viridochromogenes. Nucleotide sequence analysis of the 2.75-kb NcoI fragment revealed the presence of three open reading frames. Open reading frame 3 was termed glnII since significant similarity was found between its deduced amino acid sequence and those from GS of eucaryotes and GSII of members of the family Rhizobiaceae. Subcloning experiments showed that PTT resistance is mediated by overexpression of glnII encoding a 37.3-kilodalton protein of 343 amino acids. A three- to fourfold increase in gamma-glutamyltransferase activity could be observed in S. lividans transformants carrying the glnII gene on a multicopy plasmid. For S. viridochromogenes it was shown that PTT resistance conferred by the 2.75-kb NcoI fragment was dependent on its multicopy state. GS activity encoded by glnII was found to be heat labile. Southern hybridization with seven different Streptomyces strains suggested that they all carry two types of GS genes, glnA and glnII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号