首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GnRH (250 μg) was administered intravenously in a total of 121 experiments carried out on 21 cows during the period from 180 days ante (ap) to 50 days post partum (pp). Additionally in one group of animals prolactin secretion was inhibited after parturition by means of 3 intramuscular injections of 150 mg Bromocryptine (CB-154) on days 1, 4 and 7 pp. LH response (peak height, area under the dose response curve) was about the same from 150 to 60 days ap, then decreased significantly towards parturition and was lowest during the first 6 days post partum. At a later time the Lh response was more pronounced than during pregnancy. The FSH response decreased significantly during the last 9 days ap, remained low during the frist 6 days pp and increased thereafter. There was no significant influence of prolactin inhibition on LH and FSH values (except for the total FSH released on day 50 pp). Whereas in all GnRH treated animals pronounced pituitary gonadotropin responsiveness was measurable (except during the period around parturition), the variation of the LH response pp was much higher than ap. The LH results gave some indication of the wide range of response pattern for this hormone after parturition which might be one reason for the individuality in the initiation of a new estrous cycle post partum in cattle.  相似文献   

2.
Heterologous radioimmunoassays (RIA) for macaque LH and FSH were validated for the measurement of these hormones in the sooty mangabey and mangabey pituitary LH was characterized relative to rhesus monkey LH. Dilutions of a pituitary mangabey extract and a partially purified preparation of mangabey LH ran parallel to a rhesus monkey standard (LER 1909-2) in the ovine-ovine (o-o) LH assay but showed some deviation from parallelism in the rhesus monkey FSH assay. The LH potency of the mangabey extract and standard were six and 190 times more potent, respectively, than LER 1909-2 in the LH RIA. Mangabey LH was estimated to have a molecular weight of 40,000–42,000 daltons vs 35,000–38,000 daltons for rhesus LH on Sephadex G-100 chromatography. Plasma levels of radioimmunoreactive LH, FSH, and testosterone were assayed before and after a bolus administration of 25, 50, or 100 μg synthetic go-nadotropin releasing hormone (GnRH) to adult male mangabeys. A significant increase in serum levels of LH was seen within 30 min with levels more than fourfold higher than the basal level of LH after administration of 100 μg GnRH. However, no consistent increases in plasma FSH values were detected. The integrated mean LH response above preinjection levels following 25, 50, or 100 μg GnRH was dose related. Serum levels of testosterone were also elevated after administration of GnRH, but peak concentrations of testosterone lagged behind peak levels of LH by approximately 30 min. These studies indicate that the heterologous RIAs may be used for measuring gonadotropins in the mangabey and that the male mangabey is apparently more sensitive to GnRH than the rhesus monkey.  相似文献   

3.
The objective was to determine the effect of gonadotrophin-releasing hormone (GnRH), GnRH analogue (GnRH-A) or oestradiol administration on luteinising hormone (LH) and follicle-stimulating hormone (FSH) release in GnRH-immunised anoestrous and control cyclic heifers. Thirty-two heifers (477 ± 7.1 kg) were immunised against either human serum albumin (HSA; controls; n = 8), or a HSAGnRH conjugate. On day 70 after primary immunisation, control heifers (n = 4 per treatment; day 3 of cycle) received either (a) 2.5 μg GnRH or (b) 2.5 μg of GnRH-A (Buserelin®) and GnRH-immunised heifers (blocked by GnRH antibody titre; n = 6 per treatment) received either (c) saline, (d) 2.5 μg GnRH, (e) 25 μg GnRH or (f) 2.5 μg GnRH-A, intravenously. On day 105, 1 mg oestradiol was injected (intramuscularly) into control (n = 6) and GnRH-immunised anoestrous heifers with either low (13.4 ± 1.9% binding at 1:640; n = 6) or high GnRH antibody titres (33.4 ± 4.8% binding; n = 6). Data were analysed by ANOVA. Mean plasma LH and FSH concentrations on day 69 were higher (P < 0.05) in control than in GnRH-immunised heifers (3.1 ± 0.16 vs. 2.5 ± 0.12 ng LH ml−1 and 22.5 ± 0.73 vs. 17.1 ± 0.64 ng FSH ml−1, respectively). The number of LH pulses was higher (P < 0.05) in control than in GnRH-immunised heifers on day 69 (3.4 ± 0.45 and 1.0 ± 0.26 pulses per 6 h, respectively). On day 70, 2.5 μg GnRH increased (P < 0.05) LH concentrations in control but not in GnRH-immunised heifers, while both 25 μg GnRH and 2.5 μg GnRH-A increased (P < 0.05) LH concentrations in GnRH-immunised heifers, and 2.5 μg GnRH-A increased LH in controls. FSH was increased (P < 0.05) in GnRH-immunised heifers following 25 μg GnRH and 2.5 μg GnRH-A. Oestradiol challenge increased (P < 0.05) LH concentrations during the 13–24 h period after challenge with a greater (P < 0.05) increase in control than in GnRH-immunised heifers. FSH concentrations were decreased (P < 0.05) for at least 30 h after oestradiol challenge. In conclusion, GnRH immunisation decreased LH pulsatility and mean LH and FSH concentrations. GnRH antibodies neutralised low doses of GnRH (2.5 μg), but not high doses of GnRH (25 μg) and GnRH-A (2.5 μg). GnRH immunisation decreased the rise in LH concentrations following oestradiol challenge.  相似文献   

4.
GnRH-A免疫与母兔生殖激素浓度的变化   总被引:1,自引:0,他引:1  
目的探讨促性腺激素释放激素类似物(GnRH-A)对动物生殖功能调节的效果和作用机制。方法 24只日本大耳白兔分为四组,分别在实验Ⅰ组(EG-I)、实验Ⅱ组(EG-II)和实验III(EG-III)组兔的颈背侧注射1.0 mL(100、100和50μg/mL)GnRH-A抗原,实验II组和实验III组于第3周以原剂量加强注射一次,用ELISA法测定血清GnRH抗体效价、促卵泡刺激素(FSH)和促黄体生成素(LH)含量。结果注射GnRH-A后10 d实验组兔均出现GnRH抗体,而对照组未检测到;EG-I在第30天达到高峰,而EG-II和EG-III于40~50 d至峰值,但在实验结束时(70 d)实验组均高于对照组,40~70 d时EG-II显著高于EG-I和EG-III。30~50 d时EG-II的LH明显高于EG-I和EG-III及对照组。EG-II和EG-III的FSH浓度在40 d达到峰值,但EG-II高于EG-I、对照组及EG-III,EG-I和对照组无显著差异。结论兔体内注射GnRH-A可以明显提高GnRH抗体效价,增强LH和FSH的合成与分泌,加强注射效果更明显,且与注射剂量相关,持续时间为40 d左右。  相似文献   

5.
Ovariectomized rats that were 3–4, 12 or 22 months old were injected s.c. with 4 mg, of testosterone propionate and 3 days later were injected s.c. with 2.8 mg. progesterone or the oil vehicle. Blood samples were collected by heart puncture 5 hrs. later. Serum levels of LH and FSH decreased significantly as age increased. Progesterone significantly increased serum LH and FSH levels regardless of age. The increase in serum LH concentration attributed to progesterone was greatest in the young and least in the old rats. To determine if age effects were due to differences in pituitary response to GnRH, ovariectomized rats that were 2.5 to 23 months old were injected i.v. with GnRH at doses of 100 ng or 40 ng/100 g body weight or were primed with 25 mg progesterone and 50 μg estradiol-benzoate 3 days before an injection of 2 ng GnRH/100 g body weight. Blood was obtained by heart puncture before and 20 min. after GnRH. In each experiment serum LH levels significantly decreased with increasing age but were significantly elevated by GnRH. This increase in serum LH level in response to GnRH declined with increasing age. The data suggest that the elevation in serum LH level in response to GnRH declines as a result of aging in female rats and that this effect is independent of circulating ovarian steroid levels.  相似文献   

6.
Prepuberal 130-day-old gilts were treated with 10 ml of charcoal-stripped porcine serum (PS), whole porcine follicular fluid (WpFF) or charcoal-stripped pFF (CpFF) twice daily beginning the day before and continuing 8 days after unilateral ovariectomy (ULO). Follicle-stimulating hormone (FSH) declined for the first 14 h after ULO in WpFF and CpFF gilts and then by 24 h returned to values observed at or before ULO, whereas FSH was increased nearly twofold at 14 h in PS gilts. At 8 days after ULO the remaining ovaries from PS-treated gilts were heavier than ovaries from follicular fluid-treated gilts. In a second experiment, ovariectomized 130-day-old gilts were assigned to either a group infused with PS, a group infused with 5 ml CpFF, or a group infused with 10 ml Cpff at 18 and 2 h before a gonadotropin-releasing hormone (GnRH) challenge. Porcine follicular fluid had no effect on luteinizing hormone (LH) response to GnRH, depressed the FSH response to a 10-micrograms challenge of GnRH, but had no effect on FSH response to a 50-micrograms challenge of GnRH. In a third study, gilts were subjected to sham ovariectomy (Sham) or ULO at 130 days of age. GnRH (10 micrograms) was given on Days 1, 2 or 8 after surgery. The response to GnRH in ULO versus Sham gilts did not differ for FSH or LH on any day.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The differential control of gonadotropin secretion by GnRH pulse frequency may reflect changes in the storage of LH and FSH. To test this hypothesis, ovariectomized ewes passively immunized against GnRH received pulsatile injections of saline (group 1) or GnRH analogue: 1 pulse/6 h for group 2 or 1 pulse/h for group 3, during 48 h. Immunization against GnRH suppressed pulsatility of LH release and reduced mean FSH plasma levels (3.1 +/- 0.2 vs. 2.2 +/- 0.1 ng/ml before and 3 days after immunization, respectively). Pulsatile GnRH analogue replacement restored LH pulses but not FSH plasma levels. Low and high frequencies of GnRH analogue increased the percentage of LH-containing cells in a similar way (group 1 = 6.9 +/- 0.5% vs. group 2 = 10.5 +/- 0.8%, or vs. group 3 = 9.6 +/- 0.4%). In contrast, the rise of the percentage of FSH-containing cells was greater after administration of the analogue at low frequency than at high frequency (group 1 = 3.7 +/- 0.4% vs. group 2 = 8.4 +/- 0.2%, or vs. group 3 = 5.2 +/- 0.8%). Moreover, while GnRH pulse frequency had no differential effect on FSHbeta mRNA levels, LHbeta mRNA levels were higher under high than low frequency. These data showed that the frequency of GnRH pulses can modulate the gonadotropin storage pattern in the ewe. These changes may be a component of the differential regulation of LH and FSH secretion.  相似文献   

8.
GnRH receptor values are 30-50% of normal in pituitaries of hpg male mice, and testicular LH receptors only 8% of normal (160.4 +/- 17.6 and 2013 +/- 208.1 fmol/testis respectively). In male hpg mice bearing fetal preoptic area (POA) hypothalamic implants for 10 days there was no change in pituitary GnRH receptors, pituitary gonadotrophin content, or seminal vesicle weight. However, testicular weights and LH receptors were doubled in 4/10 mice and 2 had increased serum FSH levels. Between 26 and 40 days after implantation pituitary GnRH receptors and pituitary LH increased to normal male levels, although at 40 days serum and pituitary FSH concentrations had reached only 50% of normal values. Testicular and seminal vesicle weights increased more than 10-fold by 40 days after implantation and LH receptors to 70% of normal. In hpg female mice bearing hypothalamic implants for 30-256 days pituitary gonadotrophin concentrations were normal, even though GnRH receptors reached only 60% of normal values (6.18 +/- 0.4 and 9.8 +/- 0.4 fmol/pituitary respectively). Serum FSH was substantially increased from values of less than 30 ng/ml in hpg mice to within the normal female range in hypothalamic implant recipients. Ovarian and uterine weights increased after hypothalamic grafting from only 4-5% to over 74% of normal values. LH receptors increased from 6.5 +/- 1.3 fmol/ovary for hpg mice to 566.9 +/- 39.2 fmol/ovary for implant recipients. Vaginal opening occurred about 23 days after implantation and these animals displayed prolonged periods of oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To test whether the F gene-specific differences in the plasma concentrations of FSH and LH are due to differences in the pituitary responsiveness to exogenous GnRH, ovariectomized Booroola ewes with hypothalamic-pituitary disconnection (HPD-ovx) were treated with GnRH (250 ng i.v.) once every 2 h for up to 5 weeks. In Exp. 1, jugular venous blood was collected once weekly from 13 FF and 14 ++ HPD-ovx ewes for 6 weeks before GnRH treatment and every 2nd, 3rd or 6th day for 5 weeks during treatment. In Exp. 2, jugular venous blood was collected from another 8 FF and 7 ++ HPD-ovx ewes at 5- or 10-min intervals over 4 GnRH pulses (250 ng i.v. once every 2 h) on 3 separate occasions after the animals had been subjected to the GnRH pulse regimen for approximately 7 days beforehand. Also in Exp. 2, the animals were extensively sampled around a larger (10 micrograms) i.v. injection of GnRH and the pituitary FSH and LH contents assessed after the animals had been re-exposed to the once every 2 h GnRH (250 ng i.v.) pulse regimen for several days following the larger GnRH bolus. In Exp. 3 the distributions of mean plasma concentrations of FSH and LH in individual GnRH-treated HPD-ovx ewes were compared with those in ovariectomized and ovary-intact FF and ++ ewes. During the 6 weeks before GnRH treatment (Exp. 1), the plasma concentrations of FSH (approximately 1 ng/ml) and LH (less than or equal to 0.8 ng/ml) were not different between the genotypes. After GnRH treatment both the mean FSH and LH concentrations increased significantly (P less than 0.01) above basal values after 2 days with F gene-specific differences being noted for FSH but not LH (FSH; FF greater than ++; P less than 0.05). Thereafter, the mean FSH but not LH concentrations increased at a faster rate in FF than in ++ ewes with the overall mean FSH concentrations between the genotypes being significantly different (P less than 0.05). In Exp. 2 considerable between-animal variation in the pulsatile pattern of FSH but not LH concentrations was seen in ewes of both genotypes during GnRH treatment. The overall mean FSH concentrations were higher in FF than in ++ ewes (P less than 0.05) and the mean FSH response to each GnRH pulse was significantly higher in FF than in ++ ewes (P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Synthetic GnRH, at a dose of 100 mcg, was injected intravenously into 12 healthy, single, regulary menstruating women in order to test the capacity of the pituitary to release LH and FSH in response to the administration of the decapeptide. A total of 12 tests was performed during different stages of the menstrual cycle, i.e., on D 3-4, D 13-16 and D 21-29 of the cycle. Following GnRH administration, there was a rapid increase in serum levels of LH. Although there was a pronounced variation of responses in the course of the menstrual cycle, the maximum response was observed 30 to 40 min., after injection. The mean net increases of LH (M +/- SE mIU/ml) were in the following order: 118 +/- 22 in the preovulatory phase, 63 +/- 12 in the midluteal phase, and 35 +/- 7 in the early follicular phase. A concomitant but much smaller rise in serum levels of FSH was observed. These data indicate that the sensitivity of pituitary gonadotrophs to GnRH is preferentially increased during the preovulatory phase of the cycle, thus lending further support to already published data which demonstrated increased pituitary sensitivity to GnRH toward midcycle.  相似文献   

13.
Silva ME  Colazo MG  Ratto MH 《Theriogenology》2012,77(9):1802-1810
Gonadotrophin releasing hormone (GnRH) is commonly used in llamas to induce ovulation; however, the consequence of reduced doses of GnRH on luteinizing hormone (LH) release, ovulatory response, and subsequent corpus luteum (CL) development and function have apparently not been investigated. Hence, we examined the effect of gradual reduction of gonadorelin acetate (GnRH) dosage on pituitary LH release, ovulatory response, CL development, and plasma progesterone concentrations in llamas. Non-pregnant, non-lactating adult llamas were examined once daily by transrectal ultrasonography, and those with a follicle ≥8 mm in diameter that had grown for three consecutive days were randomly assigned to receive 50 (GnRH50, n = 23), 25 (GnRH25, n = 29), 12.5 (GnRH12.5, n = 29), or 6.25 μg (GnRH6.25, n = 29) of GnRH, or 0.5 mL of PBS (Control group, n = 16) im. In a subset (7 or 8 animals/group), intense blood sampling was done to measure LH concentrations. All females were examined by ultrasonography every 12 h from treatment (Day 0) to Day 2 to determinate ovulation, and thereafter on alternate days until Day 16 to evaluate CL development (9-13 animals/group). Also, blood samples for progesterone determination were taken (9 or 10 animals/group) on alternate days from Days 0-16. Ovulatory response (%) was highest (P < 0.05) in the GnRH50 (82.6), intermediate in the GnRH25 (72.3) and GnRH12.5 (75.9) groups, and lowest in the GnRH6.25 group (48.3). No ovulations were detected in the Control group. Mean peak LH concentrations (ng/mL) were highest (P < 0.05) for GnRH50 (6.2), intermediate for GnRH25 (4.4) and GnRH12.5 (2.9), and lowest for GnRH6.25 (2.2) groups. In addition, based on regression analysis, llamas with an LH peak <4 ng/mL were less likely to ovulate. Llamas given 50 μg of GnRH released more (P < 0.05) pituitary LH and had an LH surge of longer duration than those given 25, 12.5, or 6.25 μg. However, in those that ovulated, neither GnRH treatment nor treatment by time interaction affected (P > 0.05) CL diameter or plasma progesterone concentrations. In summary, reducing the dose of GnRH gradually decreased the magnitude of the preovulatory LH surge and ovulatory response; however, subsequent CL development and plasma progesterone concentrations were not affected.  相似文献   

14.
Several characteristics of the hypothalamo-hypophysial axis were examined after down-regulation of GnRH receptors and the desensitization which accompanies it in the ewe. Down-regulation of GnRH receptors, induced by i.v. infusion of GnRH (2.5 micrograms/h) for 24 h, resulted in a 50% decrease in the number of receptors for GnRH at the end of the infusion period. The number of receptors for GnRH was restored to control values by 6 h after the infusion ended and remained stable at 12, 24, 48, 72 and 96 h after infusion. The amount of LH released in response to an i.v. injection of 100 micrograms GnRH was reduced by 82% at the end of the infusion period, but there was no significant reduction in the GnRH-induced release of FSH. The GnRH-induced release of LH was restored by 12 h after the infusion ended; however, the amount of FSH released in response to GnRH was not different from control values at any time. A decrease in both the amplitude and frequency of endogenous pulses of LH was observed from 0 to 12 h after the end of the infusion period. At no time did the concentration of gonadotrophins in the pituitary change. These results demonstrate that replenishment of receptors for GnRH and recovery of the ability of the gonadotroph to release LH are associated events. However, the GnRH-induced release of FSH does not appear to be closely related to the number of GnRH receptors. We suggest that continuous exposure to GnRH may inhibit the hypothalamic pulse generator as well as the pituitary response to the pulse generator.  相似文献   

15.
The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.  相似文献   

16.
Palta P  Madan ML 《Theriogenology》1996,46(6):993-998
This study examined the effect of gestation on the hypophyseal responsiveness of buffalo to GnRH-induced LH and FSH release. Peripheral plasma LH and FSH concentrations were measured at 1 h before and upto 6 h after administration of GnRH (1 ug/kg body weight) or saline at Days 60, 150 and 240 of gestation in 2 groups of buffalo (n = 4 each). Basal LH concentrations did not vary at the 3 stages of gestation, while basal FSH concentrations exhibited a significant reduction (P < 0.05) from Day 60 to Day 150 of gestation. There was a significant reduction in the total LH (P < 0.05) and FSH (P < 0.01) released in response to GnRH from Day 60 to Day 240 of gestation. The duration of LH and FSH peaks and the time to attain peak concentration was not affected by the stage of gestation. The results of the present study point to a progressive decline in LH and FSH release responses to GnRH during the advancement of gestation in the buffalo.  相似文献   

17.
Palta P  Madan ML 《Theriogenology》1995,44(3):403-411
The objective of this study was to investigate the hypophysial responsiveness to GnRH at different intervals post partum in Murrah buffalo. Plasma LH and FSH levels were measured at 1 h before and upto 6 h subsequent to the administration of GnRH (1 ug/kg body weight) or saline on Days 2, 20 and 35 post partum in 2 groups of buffalo (n=4 each). Plasma progesterone levels were measured in samples collected once daily from Day 3 to Day 46 post partum. Pretreatment basal LH levels exhibited a progressive increase from Day 2 through Day 35 post partum, while the basal FSH levels increased only until Day 20 post partum. Following a highly subdued LH response to GnRH on Day 2 post partum, a 408% increase (P < 0.01) was observed in the total LH released in response to GnRH on Day 20 post partum, followed by a 20% reduction (non-significant) over Days 20 to 35 post partum. The interval from parturition was highly correlated with total LH released (r = 0.711, P < 0.01). Unlike LH, a substantial amount of FSH was released following GnRH treatment on Day 2 post partum, which was not significantly different from the FSH response on Days 20 and 35 post partum. The LH and FSH response to GnRH was not significantly different between animals in which luteal activity resumed and in those which showed no luteal activity post partum. While pointing to a dramatic enhancement in the hypophysial responsiveness to GnRH between Days 2 and 20 post partum, these results suggest that pituitary responsiveness to GnRH does not appear to be the limiting factor for resumption of estrous cycles by Day 35 post partum in Murrah buffalo.  相似文献   

18.
Frequent blood samples were collected to study hormonal responses to GnRH in male and female leopards and tigers. Animals were anaesthetized with ketamine-HCl and blood samples were collected every 5 min for 15 min before and 160 min after i.v. administration of GnRH (1 micrograms/kg body weight) or saline. No differences in serum cortisol concentrations were observed between sexes within species, but mean cortisol was 2-fold greater in leopards than tigers. GnRH induced a rapid rise in LH in all animals (18.3 +/- 0.9 min to peak). Net LH peak height above pretreatment levels was 3-fold greater in males than conspecific females and was also greater in tigers than leopards. Serum FSH increased after GnRH, although the magnitude of response was less than that observed for LH. Basal LH and FSH and GnRH-stimulated FSH concentrations were not influenced by sex or species. Serum testosterone increased within 30-40 min after GnRH in 3/3 leopard and 1/3 tiger males. Basal testosterone was 3-fold greater in tiger than leopard males. LH pulses (1-2 pulses/3 h) were detected in 60% of saline-treated animals, suggesting pulsatile gonadotrophin secretion; however, in males concomitant testosterone pulses were not observed. These results indicate that there are marked sex and species differences in basal and GnRH-stimulated hormonal responses between felids of the genus Panthera which may be related to differences in adrenal activity.  相似文献   

19.
The pituitary response to exogenous GnRH was studied in 8 colts of Quarter Horse phenotype from 32 to 96 weeks of age. Colts were from dams treated daily from Day 20 to 325 of gestation with (1) 2 ml neobee oil per 50 kg body weight (controls); or (2) 2 ml altrenogest per 50 kg body weight. GnRH challenges (5 micrograms/kg body weight) were administered every 8 weeks from 32 to 96 weeks of age to estimate pituitary content of LH. Blood samples were collected every 20 min for 4 h before GnRH and 15, 30, 45, 60, 90, 120, 180, 240 and 360 min after GnRH. Serum concentrations of LH and FSH were determined for the 2 pre-GnRH and all post-GnRH samples. Baseline concentrations (mean of 2 pre-GnRH samples) of LH and FSH were not affected by treatment (P greater than 0.05). Serum concentrations of LH declined from 40 to 56 weeks and rose again between 72 and 80 weeks. Basal concentrations of FSH declined from 32 to 56 weeks, and varied widely after 56 weeks. The maximum LH response to GnRH (highest concentration after GnRH minus baseline) declined steadily in both groups for 48 to 64 weeks but remained relatively constant in both groups after 64 weeks. The maximum FSH response to GnRH declined from 32 to 64 weeks then remained relatively constant in both groups. The GnRH-induced gonadotrophin release remained low with a transient increase at 72 weeks for both hormones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号