首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The distribution of Trichoptera of the Hozgarganta River (Los Alcornocales Natural Park, SW Spain) in relation with environmental factors was examined. Three groups of species were recognised according to the altitudinal gradient. In the headwaters the caddisflies Rhyacophila fonticola, Lepidostoma hirtum, Silonella aurata, Allogamus gibraltaricus, Hydropsyche infernalis and Diplectrona felix predominated; in the constrained section of the tributaries Polycentropus kingi, Chimarra marginata, Hydropsyche iberomaroccana, R. fonticola and Tinodes sp. prevailed; finally, in the main channel H. iberomaroccana, C. marginata, Hydropsyche lobata, Leptocerus lusitanicus and Rhyacophila munda were the most important species. A direct ordination analysis (CCA) was used to describe assemblage changes among sites and corroborated that conductivity and temperature were the variables that best explained Trichoptera distribution. The temporal analysis showed changes in the Trichoptera diversity and richness in permanent stretches, as well as variations in the structure of the communities according to the season. We identified autumn‐winter species (H. infernalis, H. siltalai, H. lobata, R. fonticola and R. munda ) and summer ones (Ithytrichia sp, Oxyethira unidentata, Mystacides azurea and Setodes argentipunctellus ). In the basin we distinguished permanent, intermittent and ephemeral reaches with similar caddisfly richness and diversity, however the species composition associated with each one was different. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Boyero  Luz 《Ecological Research》2003,18(4):365-379
Our ability to detect patterns of variation of communities depends on the spatial scale of observation. I examined the spatial variation of macroinvertebrate community structure: abundance, richness, evenness, percentage of Ephemeroptera, Plecoptera and Trichoptera (EPT), and taxonomic composition across a wide range of spatial scales in two mountain streams. In a nested design, three segments were selected within each basin, three riffles within each segment, three sections within each riffle, and three samples within each section. Significant variation of communities occurred mainly at sample and riffle scales, although different community characteristics may vary at different scales. Environmental factors were strongly related to communities, but these relationships depended on spatial scale in many cases, suggesting that the influence of the environment is ultimately regulated by the grain and extent of organisms. This study highlights the importance of multiscale studies to obtain a complete understanding of the spatial variation of macroinvertebrate communities and their relationship with the environment.  相似文献   

3.
The caddisfly community composition in different microhabitats at tufa barriers was studied in the Plitvice Lakes NP, Croatia. Three tufa barriers were investigated and six emergence traps were installed at each site covering various microhabitats. Sampling was conducted monthly during the year 2008. Tufa barriers are lake outlet habitats, but they feature a variety of microhabitats similar to streams, which is reflected in the composition of caddisfly communities regarding longitudinal distribution preferences. The caddisfly communities at all three sites were dominated by species typical for the rhithral zone, but there was a shift in species composition along a longitudinal gradient, from the epirhithral to the metarhithral zone. Analysis of functional feeding guilds showed considerable differences between the caddisfly community at the Labudovac barrier and both downstream barriers, shifting from one with a quite diverse composition, to one completely dominated by passive filter‐feeders. Passive filter feeders were not represented by the same taxa at up‐ and downstream barriers (i.e., by Hydropsyche species and Wormaldia species, at the Labudovac barrier and at both downstream barriers, respectively). Due to high complexity and habitat diversity, the highest diversity and equitability of caddisfly communities were recorded at microhabitats with particulate tufa and medium current velocity (10–20 cm/s). The lowest diversity and species richness were recorded for silt with low current velocity (0–10 cm/s). Abundance of caddisflies was positively correlated with current velocity due to a very high proportion of rheophilic passive filter feeders in the communities. However, community composition and structure is only to some degree influenced by microhabitat characteristics, but rather by their general position within the barrage‐lake system, i.e., longitudinal distribution and thereby availability of different food resources. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Temporary rivers within the Nyaodza-Gachegache subcatchment in northwestern Zimbabwe were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Macroinvertebrate communities of intermittent and ephemeral rivers displayed significant differences in the number of taxa, macroinvertebrate abundance, Shannon and Simpson diversity indices and in size class structure. Intermittent sites were characterised by higher numbers of taxa, diversity and Ephemeroptera and Trichoptera richness compared to ephemeral sites. The fauna of ephemeral sites was dominated by a single taxon (Afrobaetodes) (Ephemeroptera, Baetidae) whilst larger sized taxa (e.g. Elassoneuria (Ephemeroptera, Oligoneuriidae), Dicentroptilum (Ephemeroptera, Baetidae), Aethaloptera (Trichoptera, Hydropsychidae), Pseudagrion (Odonata, Coenagrionidae) and Tholymis (Odonata, Libellulidae) were exclusively restricted to intermittent sites. Clear differences were observed between sand, gravel, cobble and vegetation habitats. Vegetation and cobbles supported distinct communities, with some taxa exclusively restricted either to vegetation (e.g. Pseudagrion, Leptocerina (Trichoptera, Leptoceridae), Cloeon (Ephemeroptera, Baetidae), Afronurus (Ephemeroptera, Heptageniidae) and Povilla (Ephemeroptera, Polymitarcidae) or cobble (e.g. Aethaloptera and Dicentroptilum) habitats. In terms of ensuring optimum diversity within the subcatchment, we consider conservation of critical habitats (cobbles and vegetation) and maintenance of natural flows as the appropriate management actions. Handling editor: D. Dudgeon  相似文献   

5.
From autumn 2005 to spring 2008, a study focusing on the collection of Trichoptera larvae was conducted in the catchment of the Guadiamar River (SW Spain). The distribution of caddisfly species in relation with environmental factors was examined. Four groups of species were recognised according to the environmental gradient. A direct ordination analysis (CCA) used to describe assemblage changes among sites corroborated that conductivity, land-use, geomorphological gradient, and temporality were the variables that best explain the Trichoptera distribution, but to establish the relative influence of the land-use variables was difficult. On the other hand, mining pollution appeared to be the main factor explaining Trichoptera community structure. In April 1998 this river system underwent an accidental release of a large mass of toxic mine waste, which exterminated macroinvertebrates in the middle and lower parts and floodplain. Several years later, caddisfly communities in these areas were different from those of unaffected upper reaches. The species assemblage was especially poor in lower river reaches that underwent the permanent, diffuse urban and agricultural pollution. These conditions were tolerated only by Hydropsyche exocellata Duföur.  相似文献   

6.
Aim Species diversity and genetic diversity within a taxon are intrinsic parts of global biodiversity. These two levels of biodiversity can show strong correlation due to a variety of reasons (i.e. parallel processes affecting both communities and populations, genotypes of a numerically or functionally dominant species affecting community composition, a species assemblage selecting for a particular genotype by affecting its selection regime). We examined correlations between species and genetic biodiversity in four isolated endemic‐rich spring systems in a hot desert and their potential link to environmental variables and physical isolation. Location Chihuahuan Desert spring systems in the Pecos River basin of New Mexico and Texas, USA. Methods We compared species richness of fish and benthic macroinvertebrate communities to within‐population allelic richness of amphipods (monophyletic Gammarus spp.) and Pecos gambusia (Gambusia nobilis) using Mantel tests. We also compared pairwise community similarities with pairwise genetic identities of populations among the same groups. We tested correlations among diversity, similarity and environmental variables after controlling for the effects of spatial distances using partial Mantel tests. We partitioned genetic and species diversity into three spatial scales (i.e. individual springs, individual spring systems, the entire region) using AMOVA and partition . Results We found strong correlations between invertebrate species richness and mosquitofish allelic richness. We found even stronger correlations of amphipod and gambusia genetic identities with fish and invertebrate community similarities; these were best explained by geographic distance rather than abiotic environmental factors. Most of the taxa and communities exhibited the largest proportion of diversity at the regional level. Main conclusions Our results suggest that drift and migration are the mechanisms that best explain our observations, and although α‐diversity among genes and species may not be strongly correlated, the pattern of species and allelic complementarity among these groups seems to be concordant at the regional level.  相似文献   

7.
Aim To examine how the employment of both community‐ and population‐level approaches can provide a wider view of the importance of contemporary and historical factors on current species distribution. We posit that community ecology should provide more information about contemporary factors, whereas population genetics should provide better information about historical factors. Location Rivers of the western Mediterranean Basin, including four subregions differing in geological history: the Iberian Plate, Transitional, Betic and Rif. Methods For a community‐level approach, Trichoptera richness and community composition were compared between subregions using species accumulation curves and a correspondence analysis. For a population‐level approach, the mtDNA cytochrome C oxidase subunit I (COI) gene of specimens of the Trichoptera midstream‐lowland species Chimarra marginata (L.) was sequenced and analysed using phylogeographical methods. Results The community approach revealed that historical events had more influence on headwater communities than contemporary ecological factors, whereas historical events had negligible influence on midstream‐lowland communities. In midstream‐lowland sites, however, the population approach showed that the genetic structure of C. marginata differed significantly between subregions and revealed patterns of historical gene migration. In terms of species richness, the Rif subregion had the lowest value per basin due to local climatic features and isolation. Main conclusions Both community‐ and population‐level approaches yielded information about the effects of historical factors on species distribution. However, the importance of historical events on current Trichoptera communities depends on the river zonation. Unlike headwater sites, midstream‐lowland sites showed signs of historical events at the population level but not at the community level at the scale used, indicating that both approaches should be employed together in biogeographical studies. Lack of detection of historical events at the community level does not necessarily mean that they are negligible. Most likely, the organizational level used is not appropriate. We also stress the importance of implementing conservation measures for rivers in the western Mediterranean, especially under future scenarios of climate change and human disturbances in the Mediterranean Basin.  相似文献   

8.
An important goal in aquatic ecology is to determine the interacting variables that regulate community structure; however, complex biotic and abiotic interactions coupled with the significance of scale have confounded the interpretation of community data. We evaluated stream and riparian habitat features in southeastern Oklahoma, USA at a range of spatial scales from local, in-stream variables to large-scale, regional characteristics to address the following questions: (1) How much variation in trichopteran community composition can be attributed to local, regional, and spatial variables? and (2) What environmental variables are most important in determining trichopteran community structure? We collected data on caddisfly community structure, local and regional environmental variables, and spatial location on the landscape from 25 sites in four rivers. We analyzed these data using canonical correspondence analysis (CCA) and variation partitioning. Our analysis explained approximately 60% of the variation in caddisfly community composition. We found that local and regional environmental variables were near equal in importance in governing caddisfly communities, with each accounting for approximately a quarter of the explained variation. Although pure spatial variables were less important, the amount of variation shared among spatial variables and local and regional variables was substantial, indicating that biogeographic history is also key to understanding caddisfly distributions. We also found a strong influence of human landuse (i.e., percent of land in agriculture, distance to roads) on caddisfly community composition. Our study indicated that communities are influenced by factors across scales, and that bioassessments should focus on not only local habitat conditions, but also incorporate larger-scale factors.  相似文献   

9.
We tested the relative importance of physical versus chemical factors in explaining aquatic plant species diversity and community composition within a temperate lowland river. A total of 38 macrophyte species were identified at 33 sites along the 104 km length of the Rideau River, a National Heritage River of Canada. Species richness ranged from 0 to 15 species per site, and Shannon diversity from 0 to 2.98. Macrophyte species richness and Shannon diversity were significantly related to the physical characteristics of sites. For Shannon diversity, 77% of the increase was explained by an increase in sediment organic content and a decrease in water velocity. For species richness, 70% of the increase was explained by the latter factors in addition to an increase in the littoral zone (0–2 m depth contour) width and planktonic chlorophyll concentrations. River water chemistry did not explain any observed variation in either Shannon diversity or species richness in this moderately enriched system. In contrast to species richness, the physical and chemical variables measured failed to explain variation in community composition. Cluster analysis did not reveal any grouping of species into distinct communities. Canonical correlation analysis showed that environmental variables had minimal effect on the distribution of most species, with only floating-leaved species responding to water velocity. We conclude that physical factors can predict species diversity at the within river scale but not the species composition at a given site, underlying the need to preserve the geomorphological diversity of rivers to maintain plant diversity.  相似文献   

10.
Government and academic studies indicate that many streams in the Appalachian Mountains have degraded biological communities stemming from a variety of regional landuses. Headwater stonefly (Plecoptera) and caddisfly (Trichoptera) assemblages were assessed between 1999 and 2004 in relation to pervasive landuse disturbances (coal mining and residential) in mountainous areas of eastern Kentucky, USA. Indicator metrics (richness, abundance, tolerance, and an observed/expected (O/E) null model) were compared among 94 sites with different land use pressures including least disturbed reference, residential, mining, and mixed mining and residential categories. Thirty-three stonefly species from 26 genera and 9 families were identified; Leuctra, Acroneuria, Haploperla, and Isoperla comprised the core genera that commonly decreased with disturbance. Caddisflies were represented by 48 species, 32 genera, and 14 families. Core caddisfly genera (Neophylax, Pycnopsyche, Rhyacophila, Lepidostoma, and Wormaldia) were extirpated from most disturbed sites. Species richness was significantly higher at reference sites and reference site mean tolerance value was lowest compared to all other categories; relative abundance of both orders was variable between disturbance groups. Non-metric multidimensional scaling (for riffle-dwelling stonefly and caddisfly genera) clustered reference sites distinctly from most other sites. The O/E index was highly correlated with individual habitat and chemical stressors (pH, conductivity) and on average, it estimated ~ 70% loss of common stoneflies and caddisflies across all disturbed landuse categories. Expected plecopteran and trichopteran communities were radically altered in streams draining mining and residential disturbance. Long-term impacts incurred by both landuses will continue to depress these vulnerable indigenous fauna.  相似文献   

11.
Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter–polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter–polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter–polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter–polluted urban rivers and supports their future sustainable management.  相似文献   

12.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

13.
1. Trichoptera is an ecologically and taxonomically diverse order, and caddisfly species are under increasing pressure from anthropogenic threats to larval habitats, rivers, and streams. 2. This study evaluated long-term changes in caddisfly communities of the Ogeechee River, a subtropical blackwater river in the south-eastern U.S. Coastal Plain, to understand how changes manifest as a result of ongoing human impacts. Two datasets separated by more than 30 years were used, each representing a 2-year monthly quantitative sampling effort (1981–1983; 2015–2017). 3. Community structure of the Ogeechee River caddisflies significantly changed, though not in ways that were predicted. The average sensitivity values of the caddisfly community declined, contrary to the expectation that increasing human impacts on a river ecosystem would promote the survival of more pollution-tolerant taxa. 4. Generic richness increased in the 2010s from the 1980s, perhaps as a result of relaxed competition following declines of large, dominant taxa. The increases in various taxa have resulted in similar overall abundance metrics between time periods, although other studies of Ogeechee River invertebrates indicate that the biomass of the new taxa is far lower than that produced by the assemblages of the 1980s. Functional richness, evenness, and dispersion were higher in the 2010s, but divergence was not. 5. This suggests that more nuanced monitoring efforts, focused on the threats to ecological function and the role of caddisflies (and other sensitive freshwater organisms), will be required to evaluate the changes in community structure and determine which taxa are most adversely affected.  相似文献   

14.
盐生植物种类及其所具有的不同耐盐调节方式影响着根际微生物群落的结构与组成。为明确不同类型盐生植物根际与非根际土壤中真菌群落结构与组成的差异及其与土壤环境间的相互关系,该研究采集了黄河三角洲地区芦苇、盐地碱蓬、獐毛3种不同类型盐生植物0~20 cm土层的根际和非根际土壤,通过高通量测序对其真菌群落多样性和结构进行了分析,以探究真菌群落特征与土壤理化因子间的关系。结果表明:(1)3种不同类型盐生植物根际土壤真菌群落丰富度显著大于各自非根际土,且獐毛根际土壤真菌群落丰富度显著大于芦苇和盐地碱蓬的根际土。(2)距离热图分析表明,芦苇和盐地碱蓬非根际土壤真菌群落间的相似性最大。(3)土壤真菌多样性和丰富度与土壤总碳、总氮、有效磷、pH呈正相关关系,与土壤盐分含量呈负相关关系。(4)3种不同类型盐生植物的根际与非根际土壤中,球囊菌门(Glomeromycota)均为绝对优势门,盾巨孢囊霉属(Scutellospora)为优势属。(5)RDA分析表明,土壤盐分含量是影响土壤真菌群落结构的重要因子,球囊菌门丰度与土壤总氮、总碳、有效磷、有机碳、pH呈正相关关系,与盐分呈负相关关系。(6)植物土壤真菌群...  相似文献   

15.
The impacts of differences in watershed land uses, and differences in seasonality on benthic macroinvertebrate communities, were evaluated in 12 stream sites within the Xitiaoxi River watershed, China, from April 2009 to January 2010. The composition of macroinvertebrate community differed significantly among three land use types. Forested sites were characterized by high taxa richness, diversity and the benthic‐index of biotic integrity (B‐IBI), while farmland and urban disturbed stream sites presented contrary patterns. The percentage of urban land use, conductivity, dissolved oxygen, ammonia nitrogen and total phosphorus were the major drivers for the variations. The land use related water quality stress gradients of the four sampling seasons were determined by means of four independent Principal Component Analyses. The responses of macroinvertebrate community metrics, to anthropogenic stressors, were explored using Spearman Rank Correlation analyses. All the selected metrics, including total numbers of taxa, numbers of Ephemeroptera, Plecoptera and Trichoptera taxa, percentage of non‐insect abundance, percentage of scrapers abundance, Pielou’s evenness index, Simpson diversity index, and the Benthic Index of Biotic Integrity were correlated significantly with environmental gradients (PC1) in autumn. In other seasons such correlations were less pronounced. Our results imply that autumn is the optimal time to sample macroinvertebrate communities, and to conduct water quality biomonitoring in this subtropical watershed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
High-throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead–zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.  相似文献   

17.
北京城市公园常见乔木土壤真菌群落特征及影响因素   总被引:1,自引:0,他引:1  
于天赫  张乃莉  于爽  曲来叶 《生态学报》2021,41(5):1835-1845
快速城市化引起的城市环境污染问题日趋严重,由城市中心到城郊往往呈规律性递变趋势。北京城市公园作为城市绿地主体,不仅是城市居民重要的休闲游憩场所,也能在一定程度上反应环境污染,如土壤重金属污染的作用规律。以北京市这一典型大城市为研究区域,根据不同城市公园的建成时间、所处位置和距离市中心的远近选择六个公园作为研究样点,选取公园常见6种乔木下土壤,通过对土壤重金属含量、土壤理化性质以及土壤真菌群落测定和测序,旨在探讨城市公园植被下土壤真菌群落特征(多样性和群落结构组成)以及影响因素。研究结果表明:北京城市公园乔木下的土壤真菌群落多样性、群落组成以及优势类群受到土壤pH值、土壤养分和水分以及重金属铅的调控。其中公园土壤重金属铅含量增加会降低土壤真菌多样性、显著影响优势类群子囊真菌(占真菌群落73%)以及土壤真菌功能类群病原真菌群落组成。研究揭示了北京城市公园土壤真菌群落特征及调控因素,特别是重金属铅对土壤真菌群落的影响,这对提高城市公园科学管理和环境健康具有积极的应用价值。  相似文献   

18.
A data set on intestinal helminth parasites was collected in the course of an 18 year investigation into the biology of eels in Meelick Bay, Lough Derg, River Shannon. This was used to test two hypotheses relating to the composition and structure of intestinal helminth communities, namely that eels in large rivers do not harbour richer and more diverse communities than those in small rivers but that community composition and structure are more stable over time than in small rivers. The helminth community was species poor, with only six species comprising the component community and a maximum infracommunity richness of three species. The community was overwhelmingly dominated by the acanthocephalan Acanthocephalus lucii, reflecting the importance of its intermediate host Asellus aquaticus in the eels' diet. The remaining helminth species contributed to species richness but made very little contribution to community diversity. Population levels of Acanthocephalus lucii fell and remained low between 1992 and 2000, probably reflecting increased movement of eels from other parts of the lough into Meelick Bay. Diversity values were low, but similar to those reported from other rivers in Britain and Europe. The results provided support for both hypotheses and indicated that in respect of richness, diversity and dominance, the helminth communities of eels in the River Shannon were typical of, and comparable to, those of other large rivers throughout Europe.  相似文献   

19.
Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant–pollinator communities in mixed‐conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant–pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β‐diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought‐induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant–pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may negatively affect the richness of plant–pollinator communities across large spatial scales.  相似文献   

20.
Urban development and species invasion are two major global threats to biodiversity. These threats often co‐occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non‐invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land‐use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community‐weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号