首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Linked glycosylation is a frequent protein modification that occurs in all three domains of life. This process involves the transfer of a preassembled oligosaccharide from a lipid donor to asparagine side chains of polypeptides and is catalyzed by the membrane-bound oligosaccharyltransferase (OST). We characterized an alternative bacterial pathway wherein a cytoplasmic N-glycosyltransferase uses nucleotide-activated monosaccharides as donors to modify asparagine residues of peptides and proteins. N-Glycosyltransferase is an inverting glycosyltransferase and recognizes the NX(S/T) consensus sequence. It therefore exhibits similar acceptor site specificity as eukaryotic OST, despite the unrelated predicted structural architecture and the apparently different catalytic mechanism. The identification of an enzyme that integrates some of the features of OST in a cytoplasmic pathway defines a novel class of N-linked protein glycosylation found in pathogenic bacteria.  相似文献   

2.
The Campylobacter jejuni pgl locus encodes an N-linked protein glycosylation machinery that can be functionally transferred into Escherichia coli. In this system, we analyzed the elements in the C. jejuni N-glycoprotein AcrA required for accepting an N-glycan. We found that the eukaryotic primary consensus sequence for N-glycosylation is N terminally extended to D/E-Y-N-X-S/T (Y, X not equalP) for recognition by the bacterial oligosaccharyltransferase (OST) PglB. However, not all consensus sequences were N-glycosylated when they were either artificially introduced or when they were present in non-C. jejuni proteins. We were able to produce recombinant glycoproteins with engineered N-glycosylation sites and confirmed the requirement for a negatively charged side chain at position -2 in C. jejuni N-glycoproteins. N-glycosylation of AcrA by the eukaryotic OST in Saccharomyces cerevisiae occurred independent of the acidic residue at the -2 position. Thus, bacterial N-glycosylation site selection is more specific than the eukaryotic equivalent with respect to the polypeptide acceptor sequence.  相似文献   

3.
Glycosylation is the predominant protein modification to diversify the functionality of proteins. In particular, N-linked protein glycosylation can increase the biophysical and pharmacokinetic properties of therapeutic proteins. However, the major challenges in studying the consequences of protein glycosylation on a molecular level are caused by glycan heterogeneities of currently used eukaryotic expression systems, but the discovery of the N-linked protein glycosylation system in the ε-proteobacterium Campylobacter jejuni and its functional transfer to Escherichia coli opened up the possibility to produce glycoproteins in bacteria. Toward this goal, we elucidated whether antibody fragments, a potential class of therapeutic proteins, are amenable to bacterial N-linked glycosylation, thereby improving their biophysical properties. We describe a new strategy for glycoengineering and production of quantitative amounts of glycosylated scFv 3D5 at high purity. The analysis revealed the presence of a homogeneous N-glycan that significantly increased the stability and the solubility of the 3D5 antibody fragment. The process of bacterial N-linked glycosylation offers the possibility to specifically address and alter the biophysical properties of proteins.  相似文献   

4.
Chen MM  Glover KJ  Imperiali B 《Biochemistry》2007,46(18):5579-5585
The gram-negative bacterium Campylobacter jejuni was recently discovered to contain a general N-linked protein glycosylation pathway. Central to this pathway is PglB, a homologue of the Stt3p subunit of the eukaryotic oligosaccharyl transferase (OT), which is involved in the transfer of an oligosaccharide from a polyisoprenyl pyrophosphate carrier to the asparagine side chain of proteins within the conserved glycosylation sites D/E-X1-N-X2-S/T, where X1 and X2 can be any amino acids except proline. Using a library of peptide substrates and a quantitative radioactivity-based in vitro assay, we assessed the amino acids at each position of the consensus glycosylation sequence for their impact on glycosylation efficiency, whereby the sequence DQNAT was found to be the optimal acceptor substrate. In the context of a full-length folded protein, the differences between variations of the glycosylation sequences were found to be consistent with the trends observed from their peptidyl counterparts, though less dramatic because of additional influences. In addition to characterizing the acceptor preferences of PglB, we also assessed the selectivity toward the glycan donor. Interestingly, despite recent reports of relaxed selectivity toward the glycan donor, PglB was not found to be capable of utilizing glycosyl donors such as dolichyl-pyrophosphate-chitobiose, which is the minimum substrate for the eukaryotic OT process.  相似文献   

5.
The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.  相似文献   

6.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.  相似文献   

7.
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.  相似文献   

8.
Campylobacter jejuni contains a general N-linked glycosylation pathway in which a heptasaccharide is sequentially assembled onto a polyisoprenyl diphosphate carrier and subsequently transferred to the asparagine side chain of an acceptor protein. The enzymes in the pathway function at a membrane interface and have in common amphiphilic membrane-bound polyisoprenyl-linked substrates. Herein, we examine the potential role of the polyisoprene component of the substrates by investigating the relative substrate efficiencies of polyisoprene-modified analogues in individual steps of the pathway. Chemically defined substrates for PglC, PglJ, and PglB are prepared via semisynthetic approaches. The substrates included polyisoprenols of varying length, double bond geometry, and degree of saturation for probing the role of the hydrophobic polyisoprene in substrate specificity. Kinetic analysis reveals that all three enzymes exhibit distinct preferences for the polyisoprenyl carrier whereby cis-double bond geometry and alpha-unsaturation of the native substrate are important features, while the precise polyisoprene length may be less critical. These findings suggest that the polyisoprenyl carrier plays a specific role in the function of these enzymes beyond a purely physical role as a membrane anchor. These studies underscore the potential of the C. jejuni N-linked glycosylation pathway as a system for investigating the biochemical and biophysical roles of polyisoprenyl carriers common to prokaryotic and eukaryotic glycosylation.  相似文献   

9.
N-linked glycosylation is recognized as an important post-translational modification across all three domains of life. However, the understanding of the genetic pathways for the assembly and attachment of N-linked glycans in eukaryotic and bacterial systems far outweighs the knowledge of comparable processes in Archaea. The recent characterization of a novel trisaccharide [beta-ManpNAcA6Thr-(1-4)-beta-GlcpNAc3NAcA-(1-3)-beta-GlcpNAc]N-linked to asparagine residues in Methanococcus voltae flagellin and S-layer proteins affords new opportunities to investigate N-linked glycosylation pathways in Archaea. In this contribution, the insertional inactivation of several candidate genes within the M. voltae genome and their resulting effects on flagellin and S-layer glycosylation are reported. Two of the candidate genes were shown to have effects on flagellin and S-layer protein molecular mass and N-linked glycan structure. Further examination revealed inactivation of either of these two genes also had effects on flagella assembly. These genes, designated agl (archaeal glycosylation) genes, include a glycosyl transferase (aglA) involved in the attachment of the terminal sugar to the glycan and an STT3 oligosaccharyl transferase homologue (aglB) involved in the transfer of the complete glycan to the flagellin and S-layer proteins. These findings document the first experimental evidence for genes involved in any glycosylation process within the domain Archaea.  相似文献   

10.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

11.
Campylobacter jejuni has a general N-linked glycosylation pathway, encoded by the pgl gene cluster. In C. jejuni, a heptasaccharide is transferred from an undecaprenyl pyrophosphate donor [GalNAc-alpha1,4-GalNAc-alpha1,4-(Glcbeta1,3)-GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac-alpha1-PP-undecaprenyl, where Bac is bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose)] to the asparagine side chain of target proteins at the Asn-X-Ser/Thr motif. In this study, we have cloned, overexpressed in Escherichia coli, and purified PglC, the glycosyl-1-phosphate transferase responsible for the first step in the biosynthesis of the undecaprenyl-linked heptasaccharide donor. In addition, we report the first synthetic route to uridine 5'-diphosphobacillosamine. Using the uridine 5'-diphosphobacillosamine and undecaprenyl phosphate, we demonstrate the ability of PglC to produce undecaprenyl pyrophosphate bacillosamine using radiolabeled HPLC and mass spectral analysis. In addition, we revealed that PglC does not accept uridine 5'-diphospho-N-acetylglucosamine or uridine 5'-diphospho-N-acetylgalactosamine as substrates but will accept uridine 5'-diphospho-6-hydroxybacillosamine, an analogue of bacillosamine that retains the C-6 hydroxyl functionality from the biosynthetic precursor. The in vitro characterization of PglC as a bacillosamine 1-phosphoryl transferase provides direct evidence for the early steps in the C. jejuni N-linked glycosylation pathway, and the coupling of PglC with the latter glycosyltransferases (PglA, PglJ, PglH, and PglI) allows for the "one-pot" chemoenzymatic synthesis of the undecaprenyl pyrophosphate heptasaccharide donor.  相似文献   

12.
Amin MN  Ishiwata A  Ito Y 《Carbohydrate research》2006,341(11):1922-1929
Various types of protein glycosylation have been identified from prokaryotes. Recent investigations have revealed the presence of N-linked glycoproteins in the pathogenic bacterium, Campylobacter jejuni. The structure of this glycan is unique, consisting of 5 GalNAc and 1 Glc, in addition to 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose (bacillosamine; Bac), which is N-glycosidically linked to the side chain of asparagine (Asn). We synthesized Bac from a 2-azido-2-deoxy-D-galactose derivative, which was further converted to the Asn-linked form.  相似文献   

13.
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.  相似文献   

14.
Protein glycosylation in bacteria: sweeter than ever   总被引:1,自引:0,他引:1  
Investigations into bacterial protein glycosylation continue to progress rapidly. It is now established that bacteria possess both N-linked and O-linked glycosylation pathways that display many commonalities with their eukaryotic and archaeal counterparts as well as some unexpected variations. In bacteria, protein glycosylation is not restricted to pathogens but also exists in commensal organisms such as certain Bacteroides species, and both the N-linked and O-linked glycosylation pathways can modify multiple proteins. Improving our understanding of the intricacies of bacterial protein glycosylation systems should lead to new opportunities to manipulate these pathways in order to engineer glycoproteins with potential value as novel vaccines.  相似文献   

15.
Larkin A  Imperiali B 《Biochemistry》2011,50(21):4411-4426
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.  相似文献   

16.
N-Linked glycoproteins are involved in several diseases and are important as potential diagnostic molecules for biomarker discovery. Therefore, it is important to provide sensitive and reliable analytical methods to identify not only the glycoproteins but also the sites of glycosylation. Recently, numerous strategies to identify N-linked glycosylation sites have been described. These strategies have been applied to cell lines and several tissues with the aim of identifying many hundreds (or thousands) of glycosylation events. With high-throughput strategies however, there is always the potential for false positives. The confusion arises since the protein N-glycosidase F (PNGase F) reaction used to separate N-glycans from formerly glycosylated peptides catalyzes the cleavage and deamidates the asparagine residue. This is typically viewed as beneficial since it acts to highlight the modification site. We have evaluated this common large-scale N-linked glycoproteomic strategy and proved potential pitfalls using Escherichia coli as a model organism, since it lacks the N-glycosylation machinery found in mammalian systems and some pathogenic microbes. After isolation and proteolytic digestion of E. coli membrane proteins, we investigated the presence of deamidated asparagines. The results show the presence of deamidated asparagines especially with close proximity to a glycine residue or other small amino acid, as previously described for spontaneous in vivo deamidation. Moreover, we have identified deamidated peptides with incorporation of (18)O, showing the pitfalls of glycosylation site assignment based on deamidation of asparagine induced by PNGase F in (18)O-water in large-scale analyses. These data experimentally prove the need for more caution in assigning glycosylation sites and "new" N-linked consensus sites based on common N-linked glycoproteomics strategies without proper control experiments. Besides showing the spontaneous deamidation, we provide alternative methods for validation that should be used in such experiments.  相似文献   

17.
In eukaryotes, N-linked protein glycosylation is a universal modification involving addition of preformed oligosaccharides to select Asn-Xaa-Ser/Thr motifs and influencing multiple biological events. We recently demonstrated that Campylobacter jejuni is the first member of the Bacteria to possess an N-linked glycan pathway. In this study, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to probe and quantitate C. jejuni N-glycan biosynthesis in vivo. To confirm HR-MAS NMR findings, glycosylation mutants were screened for chicken colonization potential, and glycoproteins were examined by mass spectrometry and lectin blotting. Consistent with the mechanism in eukaryotes, the combined data indicate that bacterial glycans are assembled en bloc, emphasizing the evolutionary conservation of protein N glycosylation. We also show that under the conditions examined, PglG plays no role in glycan biosynthesis, PglI is the glucosyltransferase and the putative ABC transporter, and WlaB (renamed PglK) is required for glycan assembly. These studies underpin the mechanism of N-linked protein glycosylation in Bacteria and provide a simple model system for investigating protein glycosylation and for exploitation in glycoengineering.  相似文献   

18.
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.  相似文献   

19.
N-linked glycosylation, a common co-translational modification in eukaryotic cells, involves the transfer of a lipid-linked oligosaccharide onto asparagine residues in a tripeptide sequon on a nascent protein in the lumen of the endoplasmic reticulum. The attachment of an oligosaccharide unit to the polypeptide at the site of occupancy can enhance solubility, improve folding, facilitate secretion, modulate antigenicity, and increase in vivo half-life of the glycoprotein. A number of proteins exhibit variable site occupancy. The efficiency of protein N-glycosylation is dependent on the kinetics of the individual steps in the biosynthesis of the dolichol-linked oligosaccharide and the transfer of the oligosaccharide from the lipid donor substrate to the nascent polypeptide. In this review, we will discuss the role of N-linked glycan site occupancy and give an overview of the possible limitations associated with variable site occupancy. The characterization of the dolichol pyrophosphate biosynthetic pathway and the recent identification of potential rate limiting enzymes in yeast and mammalian cells has made it possible to investigate their role in site occupancy. Genetic and biochemical characterization of oligosaccharide transferase (OST) complex in yeast and mammalian cells have demonstrated the importance of specific OST subunits in protein N-glycosylation. In addition, insights into the location and residues in and around the acceptor tripeptide sequon suggest an influence on N-glycan site occupancy. Insights from these characterizations are being used to elucidate methodologies to control N-glycosylation site heterogeneity.  相似文献   

20.
Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号