首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of [3H]DA (10(-7) M) into slices of rat striatum was found to be greatly dependent (greater than 99%) on the presence of sodium ion in the incubation medium. However, the formation of the [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) was only partially reduced in the absence of sodium (DOPAC, 27% of control; HVA, 47% of control). Inhibition of carrier-mediated DA neuronal uptake with nomifensine (10(-5) M) significantly decreased DA accumulation (18% of control) and [3H]DOPAC formation (62% of control), but enhanced [3H]HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on [3H]DOPAC or [3H]HVA formed from [3H]DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.  相似文献   

2.
Using microdialysis, interactions between endogenous glutamate, dopamine, and GABA were investigated in the medial prefrontal cortex of the freely moving rat. Interactions between glutamate and other neurotransmitters in the prefrontal cortex had already been studied using pharmacological agonists or antagonists of glutamate receptors. This research investigated whether glutamate itself, through the increase of its endogenous extracellular concentration, is able to modulate the extracellular concentrations of GABA and dopamine in the prefrontal cortex. Intracortical infusions of the selective glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) were used to increase the endogenous extracellular glutamate. PDC (0.5, 2, 8, 16 and 32 mM) produced a dose-related increase in dialysate glutamate in a range of 1–36 M. At the dose of 16 mM, PDC increased dialysate glutamate from 1.25 to 28 M. PDC also increased extracellular GABA and taurine, but not dopamine; and decreased extracellular concentrations of the dopamine metabolites DOPAC and HVA. NMDA and AMPA/KA receptor antagonists were used to investigate whether the increases of extracellular glutamate were responsible for the changes in the release of GABA, and dopamine metabolites. The NMDA antagonist had no effect on the increase of extracellular GABA, but blocked the decreases of extracellular DOPAC and HVA, produced by PDC. In contrast, the AMPA/KA antagonist blocked the increases of extracellular GABA without affecting the decreases of extracellular DOPAC and HVA produced by PDC. These results suggest that endogenous glutamate acts preferentially through NMDA receptors to decrease dopamine metabolism, and through AMPA/KA receptors to increase GABAergic activity in the medial prefrontal cortex of the awake rat.  相似文献   

3.
Abstract: The effect of selective inhibition of monoamine oxidase (MAO) subtypes A and B on striatal metabolism of DOPA to dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid; HVA) was studied in halothane-anesthetized rats 3 weeks after unilateral 6-hydroxydopamine lesion of the substantia nigra. Implantation of bilateral microdialysis probes allowed simultaneous quantitation of metabolite production on lesioned and control sides. The DOPA was administered as a 15-min bolus of 1 m M solution in the striatal microdialysate. Rats were pretreated with the selective MAO-A inhibitor clorgyline, or the selective MAO-B inhibitors deprenyl or TVP-101 [2,3-dihydro- N -2-propynyl-1 H -inden-1-amine-(1 R )-hydrochloride]. Intrastriatal infusion of DOPA caused an increased efflux of DA, DOPAC, and HVA, which was greater on the intact side. Clorgyline, but not deprenyl or TVP-101, increased post-DOPA DA efflux on both intact and lesioned sides. Clorgyline also caused a marked suppression of post-DOPA DOPAC and HVA effluxes, whereas only mild effects were produced by the MAO-B inhibitors. There was no evidence for a differential effect of MAO-B inhibition on efflux of DA or metabolites in the lesioned as compared with the control striatum. The results indicate a major role for MAO-A in DA metabolism both intra- and extraneuronally in the rat striatum.  相似文献   

4.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

5.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

6.
Conjugated Dopamine in Superfusates of Slices of Rat Striatum   总被引:3,自引:3,他引:0  
Abstract: An acid-hydrolyzable conjugate of 3,4-dihydroxyphenylethylamine (dopamine, DA) was detected in superfusates from slices from rat striatum. The concentrations of endogenous free and conjugated DA, and of the acid metabolites (3,4-dihydroxyphenylacetic acid [DOPAC] and homovanillic acid [HVA]) in superfusates were measured using HPLC with electrochemical detection. Conjugated DA in superfusates represented 10–20% of the free DA under basal conditions and during release evoked by p -tyramine (5 × 10−6 M to 5 × 10−4 M ); much smaller amounts of conjugated DA overflowed into superfusate when DA was released by equimolar concentrations of β-phenylethyl-amine. Surprisingly, inhibition of monoamine oxidase by the inhibitors N -methyl- N -propargyl-3-(2,4-dichlorophenoxy)propylamine hydrochlo-ride (clorgyline) or N -methyl- N -2-propynylbenylamine (pargyline) had little effect on the amounts of conjugated DA present in superfusate. Under basal conditions, the amounts of conjugated DA in superfusate were always less than the amounts of DOPAC but quite similar to the amounts of HVA. However, during release of DA evoked by p -tyramine the concentrations of conjugated DA in superfusate showed much more pronounced increases than those of the acidic metabolites.  相似文献   

7.
Duan CL  Sun XH  Ji M  Yang H 《生理学报》2005,57(1):71-76
采用微透析和高效液相色谱一电化学(HPLC-ECD)技术研究了谷氨酸和MK-801对正常和帕金森模型人鼠纹状体内多巴胺代谢的影响。用微透析技术在大鼠纹状体内分别定位给以左旋多巴、L-谷氨酸和/或MK-801,同时收集透析液,用HPLC-ECD方法测定透析液中多巴胺代谢产物的浓度。微透析和HPL-ECD分析结果表明:纹状体内定位给以序旋多巴,正常大鼠和帕金森模型大鼠纹状体内多巴胺代谢产物的浓度均升高;纹状体内定位给以L-谷氨酸,可使正常大鼠纹状体内多巴胺代谢产物的浓度降低,但对帕金森火鼠模型纹状体内多巴胺代谢产物浓度的降低不显著;纹状体内定位给以MK-801,正常人鼠纹状体内多巴胺代谢产物的浓度升高:但对帕金森人鼠模型纹状体内多巴胺代谢产物浓度的升高不显著:纹状体内同时定位给以MK-80l和L-谷氨酸,可以有效防止L-谷氨酸所致正常人鼠纹状体内多巴胺代谢产物浓度的降低。结果提示,谷氦酸可以通过NMDA受体调节多巴胺的代谢。尽管非竞争性NMDA拈抗剂MK-801可以有效防止L-谷氨酸所敛正常人鼠纹状体内多巴胺代谢产物浓度的降低,但却不能有效地改善帕金森大鼠模型纹状体内多巴胺的代谢水平。因此存正常及帕金森病情况下,谷氮酸一多巴胺相互作用机制和MK-801改善帕金森病的机制还有待进一步研究。  相似文献   

8.
9.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

10.
4-aminopyridine (4-AP) is a voltage-sensitive K+-channel blocker extensively used in in vitro experiments as a depolarizing agent for the release of glutamate (GLU). This research investigated whether 4-AP could be used in in vivo experiments using microdyalisis. For that, the effects of 4-AP on the extracellular concentrations of glutamate (GLU), glutamine (GLN), taurine (TAU) and citrulline (CIT) in striatum of the freely moving rat were investigated. The effects of 4-AP were compared with those produced by perfusion with a high K+ (100 mM) medium. Intrastriatal perfusion with 4-AP (1, 5 and 10 mM) produced no effects on extracellular [GLU], [TAU] and [CIT], but decreased extracellular [GLN]. Perfusion with a high K+ (100 mM) medium increased extracellular [GLU] and [TAU], decreased extracellular [GLN], and had no effects on [CIT]. To test whether the lack of effects of 4-AP on extracellular [GLU] was due to GLU uptake mechanisms, 4-AP was perfused after a previous inhibition of GLU uptake with L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC). Under the effects of PDC (1 mM), 4-AP (1 mM) had no effects on extracellular [GLU], [TAU] and [CIT], but decreased extracellular [GLN]. These results show that 4-AP decreased extracellular [GLN] but failed to produce a significant release of GLU in striatum of the freely moving rat. Thus, 4-AP can not be used as a depolarizing agent for stimulating the release of GLU in in vivo studies using microdialysis.  相似文献   

11.
Abstract: By using a new technique, intracerebral dialysis, in combination with high performance liquid chromatography and electrochemical detection, it was possible to recover and measure endogenous extracellular dopamine, together with its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) from the striatum and nucleus accumbens of anaesthetized or freely moving rats. In addition, measurements of extracellular 5-hydroxyindoleacetic acid, ascorbic acid, and uric acid were made. Basal extracellular concentrations of dopamine and DOPAC in the striatum were estimated to be 5 × 10−8 M and 5 × 10−6 M , respectively. d -Amphetamine (2 mg/kg s.c.) increased dopamine levels in the striatum perfusates by 14-fold, whereas levels of DOPAC and HVA decreased by 77% and 66%, respectively.  相似文献   

12.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:4,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

13.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

14.
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 mM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 M decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 M increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 M decreased DOPAC. NMDA 500 M decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 M) blocked the effects of AMPA (100 M) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 M) blocked the effects of NMDA 500 M on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.  相似文献   

15.
Haloperidol-induced dopamine (DA) release and metabolism were studied in the rat striatum at 10-11, 21-22, and 35-36 days of age using intracerebral dialysis and HPLC with electrochemical detection. There was an age-related increase in basal DA release and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), with the greatest increases occurring between 10-11 and 21-22 days of age. Haloperidol (0.1 mg/kg, i.p.) significantly increased DA release at each age compared to control. Also, haloperidol produced a significantly greater increase in DA release at 10-11 days than at 21-22 or 35-36 days of age when expressed as percentage of predrug release. Haloperidol increased DA release over 60 min to 235%, 138%, and 158% above baseline at 10-11, 21-22, and 35-36 days of age, respectively, after which time the levels remained relatively constant. Haloperidol significantly increased extracellular DOPAC and HVA levels at each age compared to controls, but there were no significant differences in DOPAC or HVA levels between ages in response to haloperidol. The results indicate that, at 10 days of age, DA release in the striatum is physiologically functional and that the regulatory feedback control of DA release and metabolism in the striatum develops prior to 10 days of age.  相似文献   

16.
Two procedures using liquid chromatography with electrochemical detection are described for the determination of dopamine (DA) and its two acidic metabolites, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC), in subregions of rat striatum and nucleus accumbens. A strong cation-exchange column was used for DA analysis and a C1 reversed-phase column was used for the analysis of the metabolites. Effects of pH, temperature and percentage of methanol on the retention time of HVA and DOPAC were studied. Levels of these compounds in the subregions of rat striatum and nucleus accumbens are reported.  相似文献   

17.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

18.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

19.
In vivo microdialysis was used to investigate whether nitric oxide (NO) modulates striatal neurotransmitter release in the rat through inducing cyclic GMP formation via soluble guanylate cyclase or formation of peroxynitrite (ONOO(-)). When NO donors, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 1 mM) or (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (NOC-18; 1 mM), were retrodialysed for 15 min, acetylcholine (ACh), serotonin (5-HT), glutamate (Glu), gamma-aminobutyric acid (GABA), and taurine levels were significantly increased, whereas those of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Only effects on ACh, 5-HT, and GABA showed calcium dependency. Inhibition of soluble guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 100 and 200 microM) dose-dependently reduced NO donor-evoked increases in ACh, 5-HT, Glu, and GABA levels. Coperfusion of SNAP or NOC-18 with an ONOO(-) scavenger, L-cysteine (10 mM) resulted in enhanced concentrations of Glu and GABA. On the other hand, DA concentrations increased rather than decreased, and no reductions in DOPAC and 5-HIAA occurred. This increase in DA and the potentiation of Glu and GABA were calcium-dependent and prevented by ODQ. Similar to NO, infusions of ONOO(-) (10 or 100 microM) decreased DA, DOPAC, and 5-HIAA. Overall, these results demonstrate that NO increases ACh, 5-HT, Glu, and GABA levels primarily through a cyclic GMP-dependent mechanism. For DA, DOPAC, and 5-HIAA, effects are determined by levels of ONOO(-) stimulated by NO donors. When these are high, they effectively reduce extracellular concentrations through oxidation. When they are low, DA concentrations are increased in a cyclic GMP-dependent manner and may act to facilitate Glu and GABA release further. Thus, changes in brain levels of antioxidants, and the altered ability of NO to stimulate cyclic GMP formation during ageing, or neurodegenerative pathologies, may particularly impact on the functional consequences of NO on striatal dopaminergic and glutamatergic function.  相似文献   

20.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号