首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

2.
3.
H. Kasemir  G. Prelim 《Planta》1976,132(3):291-295
Summary The rate of chlorophyllide esterification in mustard cotyledons can be increased by a pretreatment with 5 min red light applied 24 h prior to the protochlorophyll(ide)chlorophyll(ide) photoconversion at 60 h after sowing. Simultaneously the red light pulse pretreatment leads to a decrease of the total amount of chlorophyll(ide) a in darkness. It has been proven that phytochrome (Pfr) is the photoeffector for both. Since the amounts of esterified chlorophyllide are determined by the ratio [chlorophyll a]/[chlorophyllide a+chlorophyll a] it is assumed that Pfr increases the rate of esterification indirectly via stimulating the decrease of chlorophyll(ide) a. The regulation of chlorophyll synthesis by Pfr does not seem to involve a control of esterification. The duration of the chlorophyllide esterification differs from the duration of the Shibata shift although both are greatly shortened by the red light pulse pretreatment. The effect of 5 min red light on the duration of the esterification is fully reversible by 5 min far-red light while the reversibility with respect to the Shibata shift is lost within 2 min [Jabben, M. and H. Mohr, Photochem. Photobiol. 22, 55–58 (1975)]. We conclude that the control of the chlorophyllide esterification and the control of the Shibata shift cannot be traced back to the same initial action of Pfr.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Chl(ide) sum of Chl and Chlide - PChl protochlorophyll - PChlide protochlorophyllide - PChl(ide) sum of PChl and PChlide - Pfr far-red absorbing form of the phytochrome system  相似文献   

4.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

5.
M. Masoner  G. Unser  H. Mohr 《Planta》1972,105(3):267-272
Summary Data are presented which indicate that the rate of synthesis and the pool size of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling are controlled by the active form of phytochrome (Pfr). Inductionreversion experiments show that formation of chlorophyll a through photoconversion of the protochlorophyll(ide) by repeated red pulses (5 min each) has no effect on synthesis of carotenoids and galactolipids. Since the protochlorophyll(ide)-converting activity of the standard far-red light used in this laboratory is very low, chlorophyll-a accumulation is very slow under continuous standard far-red light. It is concluded that photosynthesis (or photosynthetic phosphorylation) does not participate in the high irradiance reaction of photomorphogenesis.  相似文献   

6.
K. Malhotra  H. Oelze-Karow  H. Mohr 《Planta》1982,154(4):361-370
We have performed a comprehensive study on the mechanism of regulation of carotenogenesis by light in the shoot of Sorghum vulgare. Our work shows that carotenoid accumulation is simultaneously controlled by phytochrome (Pfr) and by the availability of chlorophyll. Throughout plastidogenesis light dependent chlorophyll and carotenoid accumulation are interdependent processes: Accumulation of chlorophyll in natural light requires the presence of carotenoids; likewise, accumulation of considerable amount of carotenoids depends on the availability of chlorophyll. However, in both cases the efficiency of the biosynthetic pathway, the potential biosynthetic rates (capacities) are determined by phytochrome. A push and pull model of carotenogenesis advanced previously (Frosch and Mohr 1980, Planta 148, 279) to explain carotenogenesis in the mustard (Sinapis alba) seedling also applies to the monocotyledonous milo (Sorghum vulgare) seedling. Therefore, we suggest that the model applies to carotenogenesis in higher plants in general.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR High irradiance response (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - P red absorbing physiologically inactive form of phytochrome - Ptot total phytochrome - i.e. [Pr]+[Pfr] =[Pfr]+[Ptot], wavelength dependent photoequilibrium of the phytochrome system - RL red light - FR far-red light  相似文献   

7.
Klein S  Katz E  Neeman E 《Plant physiology》1977,60(3):335-338
A short illumination of etiolated maize (Zea mays) leaves with red light causes a protochlorophyll(ide)-chlorophyll(ide) conversion and induces the synthesis of δ-aminolevulinic acid (ALA) during a subsequent dark period. In leaves treated with levulinic acid, more ALA is formed in the dark than in control leaves. Far red light does not cause a conversion of protochlorophyll(ide) into chlorophyll(ide) and does not induce accumulation of ALA in the dark. Both red and far red preilluminations cause a significant potentiation of ALA synthesis during a period of white light subsequent to the dark period. The results indicate a dual light control of ALA formation. The possible role of phytochrome and protochlorophyllide as photoreceptors in this control system is discussed.  相似文献   

8.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

9.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

10.
H. Kasemir  P. Huber  H. Mohr 《Planta》1976,132(2):157-160
Summary Significant accumulation of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling takes place from 24 h after sowing onwards (25° C). The rate of accumulation in darkness is greatly increased by a pretreatment with red or far-red light. The strong effect of continuous red light, given from the time of sowing, remains fully reversible by a 756 nm-light pulse up to about 18 h after sowing. On the other hand, the effect of continuous far-red light which can be detected at 15 h after sowing is not influenced by a subsequent application of 756 nm-light pulses. An interpretation of the data requires the concept that continuous red light and continuous far-red light act from different sites. This conclusion is based on a comparison of the present data with the earlier published data on phytochromemediated anthocyanin synthesis in the mustard seedling cotyledons.Abbreviations PChl protochlorophyll(ide) - Chl chlorophyll(ide) - Ptr far-red absorbing form of the phytochrome system (physiologically active) - Pr red absorbing form of the phytochrome system - [Ptot] [Pr]+[Pfr] Supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 46).  相似文献   

11.
Etiolated 6-day-old wheat (Triticum aestivum L. cv. Chris) seedlings were subjected to osmotic stress by an application of polyethylene glycol 12 h prior to the exposure to a continuous 72-h light period. The water potential of the primary leaf of stressed seedlings was between –9 and –14 bars throughout the light period. Stress impaired seedling growth, leaf unfolding, and the increase in leaf area. The imposed osmotic stress reduced total chlorophyll accumulation, particularly after 9 h light, suggesting that this is the approximate time period for the depletion of the protochlorophyll(ide) pool and the pool of an essential protochlorophyll(ide) precursor. The chlorophyll a/b ratio of extracts from stressed and non-stressed plants was the same during the 72-h greening period. Water deficit stress impaired carotenoid accumulation sooner than the impairment of chlorophyll production suggesting either a smaller carotenoid pool size of precursors or that the metabolic pathway of carotenoid synthesis was more sensitive to stress. Shifts from the usual plastid pigment absorbance maxima were not observed in these studies.  相似文献   

12.
Abstract The herbicides DCMU, bentazon, amitrole, and SAN 6706 were tested for their ability to influence the carotenoid and pro-tochlorophyll(ide) composition as well as the protochloro-phyll(ide) phototransformation and the Shibata shift in dark-grown radish seedlings (Raphanus sativus L. cv. Saxa Treib). Bentazon enhanced the formation of lutein and carotenes, while SAN 6706 suppressed the biosynthesis of carotenoids. Amitrole led to a reduced accumulation of phototransformable pro-tochlorophyll(ide). The phototransformation of pro-tochlorophyll(ide) and the Shibata shift were not affected by any of the tested herbicides, irrespective of the presence or absence of activated phytochrome. From this we conclude that herbicides inhibiting photosystem II or producing chlorosis partly affect, but do not block, carotenoid and chlorophyll biosynthesis in dark-grown plants. The main herbicide effect becomes visible only after prolonged illumination.  相似文献   

13.
When grown in darkness the photomorphogenic lip 1 mutant of pea ( Pisum sativum L.) has a slender stem, expanded leaves, prolamellar body (PLB) lacking plastids with the size of chloroplasts and a low level of phytochrome A. The lack of PLBs in a dark-grown material ( lip 1) created a possibility to further study the regulation of their formation in relation to plant development. Inclusion of a cytokinin, 2-isopentenyladenine (2iP), in a medium supporting growth of the pea seedlings in darkness was found to reduce epicotyl length in the wild type. In lip 1 the formation of a slender stem was inhibited and a short epicotyl developed. Furthermore, leaf expansion was inhibited, the plastid size reduced and the formation of PLBs induced. The PLB formation in lip 1 was not accompanied by an increase in the amount of protochlorophyllide (Pchlide) or Pchilde oxidoreductase (POR). In the presence of 2iP the level of phytochrome A protein was increased in lip 1 and the POR mRNA levels decreased in both lip 1 and wild-type plants. The chloroplast characteristic trans -3-hexadecenoate acyl group of phosphatidylglycerol, present in the plastids of dark-grown lip 1, was not influenced by 2iP. Thus, not all photomorphogenic processes reacted similarly in the lip 1 mutant, but leaf expansion and plastid differentiation, including PLB formation, seemed to be regulated by the same signal transduction chain. Exogenously applied brassinolide could rescue neither dark- nor light-grown defects of the lip 1 mutant. Thus, cytokinins but not brassinolides seem to be involved in the regulation of certain characteristic traits of skotomorphogenesis in pea, including plastid development and PLB formation.  相似文献   

14.
Preillumination, followed by a dark period prior to exposure of dark-grown nondividing cells of Euglena gracilis var. bacillaris to normal lighting conditions for chloroplast development, results in potentiation, or abolishment of the usual lag in chlorophyll accumulation. The degree of potentiation is a function of the length of the preillumination period, the intensity of preilluminating light, and the length of the dark period interposed before re-exposure to continuous light for development. The optimal conditions are found to be: 90 minutes of preillumination with white light at an intensity greater than 30 microwatts per square centimeter (14 foot candles) followed by a dark period of at least 12 hours. Reciprocity is not found between duration and intensity of preilluminating light. Preillumination with blue light and red light was found to be the most effective in promoting potentiation, and the ratio of effectiveness of blue to green to red is consistent with protochlorophyll-(ide) being the photoreceptor. Although red light is effective, there is no reversal by far red light, and these facts, taken together with the effectiveness of blue light, suggest that the phytochrome system is not involved. The amount of chlorophyll formed at the end of preillumination is proportional to the resulting potentiation, suggesting that the amount of protochlorophyll(ide) removed or chlorophyll(ide) formed regulates this phenomenon. Potentiated and nonpotentiated cells show comparable rates of protochlorophyll(ide) resynthesis, suggesting that this is not the limiting factor in nonpotentiated cells. Although light is required for protochlorophyll(ide) conversion in chlorophyll synthesis, a brief preillumination seems also to initiate the production of components in the subsequent dark period which, in nonpotentiated cells, are ordinarily synthesized during the lag period under continuous illumination. These components are necessary to sustain maximal rates of subsequent chlorophyll accumulation.  相似文献   

15.
Lamparter T  Hughes J  Hartmann E 《Planta》1998,206(1):95-102
In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptr116 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses. Received: 11 July 1997 / Accepted: 30 January 1998  相似文献   

16.
Treatment of the mustard (Sinapis alba L.) seedling with the herbicide SAN 9789 inhibits synthesis of colored carotenoids and interferes with the formation of plastid membrane lipids without affecting growth and morphogenesis significantly. In farred light, which is hardly absorbed by chlorophyll, development of plastid ultrastructure, synthesis of ribulosebisphosphate carboxylase and synthesis of chlorophyll are not affected by SAN 9789. It is concluded that normal phytochrome actions on plastid structural development, protein and chlorophyll syntheses are not affected by the absence of carotenoids provided that there is no significant light absorption in chlorophyll. The findings show that the inhibition of synthesis of one set of plastid membrane components (the carotenoids) does not stop synthesis of other components such as chlorophyll and does not halt membrane assembly. Supplementary experiments with the closely related compound SAN 9785, which affects the amount and composition of plastid lipids but not carotenoid and chlorophyll syntheses, suggest that the effect of the herbicide SAN 9789 is due exclusively to its inhibition of synthesis of colored carotenoids. In the presence of SAN 9789 white or red light at high fluence rate causes photodestruction of chlorophyll and ribulosebisphosphate carboxylase and photodecomposition of thylakoids. These effects are interpreted as resulting exclusively from the self-photooxidation and photosensitizing action of chlorophyll once the protection by carotenoids of chlorophyll against self- and sensitized photooxidation is lost.Abbreviations Carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - Chl chlorophyll a plus chlorophyll b - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - SAN 9789 -chloro-5-(methylamino)-2-(, , -trifluoro-m-tolyl)-3 (2H) pyridazinone - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazione. SAN 9789 is sold commercially under the trade name Norflurazon - fr far red - wl white light  相似文献   

17.
18.
The Nicotiana tabacum transgenic plants expressing a Cucurbita pepo antisense PHYA RNA were obtained. The seedlings of transgenic tobacco with reduced phytochrome A (PHYA) content displayed decreased sensitivity to continuous broad-band far-red radiation (λ > 680 nm). Under far-red irradiance transgenic seedlings showed less elongation of the hypocotyls, more rapid plastid development, more chlorophyll accumulation, less repression of lightdependent NADPH:protochlorophyllide oxidoreductase than wild-type plants that was in accordance with PHYA control of plant development. Dynamics of the far-red radiation dependent changes in low temperature chlorophyll fluorescence spectra for the transgenic and wild-type seedlings were consistent with the more rapid formation of photosynthetic apparatus in the seedlings with reduced PHYA.  相似文献   

19.
20.
Plastid 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA] EC 1.1.1.34) differs from the cytosolic (microsomal) reductase in pH optimum and apparent Km for RS-HMG-CoA. Values for the plastid and cytosolic enzyme (brackets) are: pH optimum 7.9 (6.9); apparent KmRS-HMG-CoA, 0.77 μm (160 μm). Hence the plastid and cytosolic enzymes appear to be different species and not simply compartmented forms of the same protein. The plastid reductase is membrane bound, optimally active only in the presence of dithiothreitol, and specifically requires NADPH; in these respects it is similar to the cytosolic enzyme. In dark-grown seedlings irradiated with red light plastid reductase activity increases to 139% of controls after 20 min, approximately double after 1.75 h, and subsequently declines to a new steady state higher than controls. Far-red reversal studies indicate phytochrome (Pfr) mediation. Reversal can only be demonstrated with very brief (1.5 min) red irradiation followed immediately by far red. It is concluded that Pfr does not act by binding to the enzyme, but that the regulatory mechanism is closely linked to the primary action of Pfr. The rapid Pfr stimulation indicates that this is an early event in the phytochrome control of chloroplast development. The response time and light effects on plastid isoprenoids (photosynthetic and hormonal) also suggest that the regulation of this enzyme is associated with the coordinate control of chloroplast and leaf development by phytochrome. The present positive Pfr control of the plastid reductase contrasts with the previously reported negative Pfr control of the cytosolic reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号