首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
On isolated preparations of the superior cervical ganglion (SCG, n = 8) taken from 21-day-old rats, we studied the intraganglion pathways and mechanisms underlying generation of synaptic responses of SCG neurons to antidromic stimulation. One of the three nerves connected with the SCG was stimulated, and compound action potentials were recorded simultaneously from the other two nerves; then, the order of stimulated and recorded nerves was changed. Orthodromic stimulation of the cervical sympathetic nerve (CSN) evoked responses in the internal carotid nerve (ICN), which could be completely blocked by hexamethonium, and responses in the external carotid nerve (ECN), which contained a component that was not blocked by this of the ECN caused responses in the CSN, which were not blocked by hexamethonium. Effects of superfusion of the SCG with a Ca2+-free solution allowed us to conclude that the hexamethonium-insensitive component of the responses in the CSN and ECN and ECN-CSN conduction can be explained by the presence of direct fibers going from the CSN to the ECN with no synaptic relay. Possible mechanisms underlying antidromic stimulation-induced synaptic responses in SCG neurons are discussed. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 396–399, July–October, 2007.  相似文献   

3.
郭金镖  卜炯 《动物学报》1990,36(1):47-51
用解剖学方法结合电生理学方法鉴别减压神经形态上的变异。在35只纯种青紫蓝家兔中,减压神经颈部有形态变异者达23只(占65.71%)20种,观察到减压神经变异的三种新类型:减压神经三分支型、“无”减压神经型和减压迷走交感干型;至于减压神经的起点,以起于喉前神经者居多。  相似文献   

4.
Calculated electric-field strengths averaged over the body surfaces of grounded humans, swine, rats, horses, and cattle exposed to vertical, uniform, power-frequency electric fields are presented. To produce the same average fields over the body surfaces of grounded animals, as that experienced by a grounded man exposed to an unperturbed vertical field of 10 kV/m, the following unperturbed fields are required: swine, 19 kV/m; rat, 37 kV/m; horse, 18 kV/m; cow, 18 kV/m.  相似文献   

5.
Cowen  T.  Jenner  C.  Song  Gu Xiao  Santoso  A. W. Budi  Gavazzi  I. 《Neurochemical research》1997,22(8):1003-1011
Whilst the potent effects of NGF and laminin on developing neurons are well documented, relatively little is known about the effects of, or altered availability of or altered responsiveness to, these substances on the growth of adult neurons. We have therefore examined this question using explant cultures of sympathetic neurons from the superior cervical ganglion (SCG) of mature and aged rats. Explants were grown on substrata containing different doses of laminin, either with or without added NGF in culture medium containing FCS. Individually, laminin and NGF had relatively small effects on neurite outgrowth and length, which tended to be reduced in old neurons. In contrast, laminin in the presence of exogenous NGF exerted a powerful effect on nerve growth which was substantially greater than the sum of the effects of the individual factors. This synergy was evident in all experimental groups and was greatest in old explants at high doses of laminin, where growth was comparable to that of mature neurons. The dose-response curve of old neurons to laminin in the presence of added NGF indicated reduced responsiveness. These results suggest that variations in the availability of laminin and/or exogenous NGF, together with altered patterns of neuronal responsiveness, may contribute to impaired neuronal plasticity in old age.  相似文献   

6.
    
Published and new data for grounded humans, swine, and rats exposed to vertical, 60-Hz electric fields are used to determine field strengths at the surfaces of the bodies and average components of induced-current density along the axes of the bodies. At the tops of the bodies, surface electric fields are increased (enhanced) over the unperturbed field strength present before the subjects entered the field by factors of 17,7, and 4 for humans, swine, and rats, respectively. For an unperturbed field strength of 10 kV/m, average induced axial current densities in the neck, chest, abdomen, and feet are: 550, 190, 250, and 2000 nA/cm2, respectively, for humans; 40, 13, 20, and 1100 nA/cm2, respectively, for swine; and 28, 16, 2, and 1400 nA/cm2, respectively, for rats. These data are used to show that the actual electric fields experienced by animals depend strongly on the shape of the body and its orientation relative to the electric field and ground plane. This fact must be taken into account if biological data obtained with laboratory animals are to be used for the assessment of possible hazards to humans exposed to 60-Hz electric fields.  相似文献   

7.
Honeybee colonies exposed under a 765-kV, 60-Hz transmission line at 7 kV/m show the following sequence of effects: 1) increased motor activity with transient increase in hive temperature; 2) abnormal propolization; 3) impaired hive weight gain; 4) queen loss and abnormal production of queen cells; 5) decreased sealed brood; and 6) poor winter survival. When colonies were exposed at 5 different E fields (7, 5.5, 4.1, 1.8, and 0.65–0.85 kV/m) at incremental distances from the line, different thresholds for biologic effects were obtained. Hive net weights showed significant dose-related lags at the following exposures: 7 kV/m, one week; 5.5 kV/m, 2 weeks; and 4.1 kV/m, 11 weeks. The two lowest exposure groups had normal weight after 25 weeks. Abnormal propolization of hive entrances did not occur below 4.1 kV/m. Queen loss occurred in 6 of 7 colonies at 7 kV/m and 1 of 7 at 5.5 kV/m, but not below. Foraging rates were significantly lower only at 7 and 5.5 kV/m. Hive weight impairment and abnormal propolization occur at lower E-field intensity than other effects and limit the “biological effects corridor” of the transmission line to approximately 23 m beyond a ground line projection of each outer phase wire. Intrahive E fields of 15–100 kV/m were measured with a displacement current sensor. Step-potential-induced currents up to 0.5 μA were measured in an electrically equivalent bee model placed on the honeycomb in a hive exposed at 7 kV/m. At 1.8 kV/m body currents were a few nanoamperes, or two orders of magnitude lower, and these colonies showed no effects. E-field versus electric shock mechanisms are discussed.  相似文献   

8.
9.
    
The survival and growth of embryonic and postnatal sympathetic neurons is dependent on both NGF and NT3. While it has been established that adult sensory neurons survive independently of neurotrophins, the case is less clear for adult sympathetic neurons, where the studies of survival responses to neurotrophins have relied upon using long‐term cultures of embryonic neurons. We have previously established a method to culture purified young (7 day) and adult (12 week) sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) in order to examine their survival and growth responses to neurotrophins. We now show that by 12 weeks after birth virtually all neurons (90%) survive for 24 h in the absence of neurotrophins. Neuron survival is unaffected by treatment with anti‐NGF antibodies (anti‐NGF) or with the tyrosine kinase inhibitor, K252a, confirming the lack of dependence on extrinsic neurotrophins. Duration of neuron survival in culture increases significantly between E19 and day 7 and week 12 posnatally, and is similarly unaffected by the presence of anti‐NGF or K252a. Saturating concentrations of NGF and NT3 are equipotent in promoting neurite extension and branching. However, we find that NGF is more potent than NT3 in promoting neurite growth, irrespective of postnatal age. The growth‐promoting effects of NGF and NT3 are almost entirely blocked by K252a, demonstrating that these effects are mediated via activation of Trk receptors, which therefore appear to remain crucial to plasticity of adult neurons. Our results indicate that maturing neurons acquire protection against cell death, induced in the absence of neurotrophin, while retaining their growth responsiveness to these factors. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 295–305, 2001  相似文献   

10.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

11.
Short-circuit currents, surface electric fields, and axial current densities were measured in electrically grounded guinea pigs exposed to a uniform, vertical, ELF electric field. These data are 70–110% of corresponding values obtained in grounded rats exposed to the same electric field.  相似文献   

12.
Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n?=?80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20?min/day, 5?d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1’-di-octadecyl-3,3,3’,3’-tetramethyloindocarbocyanine perchlorate) was applied 5?mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves.  相似文献   

13.
    
Axotomized peripheral neurons are capable of regeneration, and the rate of regeneration can be enhanced by a conditioning lesion (i.e., a lesion prior to the lesion after which neurite outgrowth is measured). A possible signal that could trigger the conditioning lesion effect is the reduction in availability of a target‐derived factor resulting from the disconnection of a neuron from its target tissue. We tested this hypothesis with respect to nerve growth factor (NGF) and sympathetic neurons by administering an antiserum to NGF to adult mice for 7 days prior to explantation or dissociation of the superior cervical ganglion (SCG) and subsequently measuring neurite outgrowth. The antiserum treatment dramatically lowered the concentration of NGF in the SCG and increased the rate of neurite outgrowth in both explants and cell cultures. The increase in neurite outgrowth was similar in magnitude to that seen after a conditioning lesion. To determine if exogenous NGF could block the effect of a conditioning lesion, mice were injected with NGF or cytochrome C immediately prior to unilateral axotomy of the SCG, and for 7 days thereafter. A conditioning lesion effect of similar magnitude was seen in NGF‐treated and control animals. While NGF treatment increased NGF levels in the contralateral control ganglion, it did not significantly elevate levels in the axotomized ganglion. The results suggest that the decreased availability of NGF after axotomy is a sufficient stimulus to induce the conditioning lesion effect in sympathetic neurons. While NGF administration did not prevent the conditioning lesion effect, this may be due to the markedly decreased ability of sympathetic neurons to accumulate the growth factor after axotomy. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

14.
Two independent series of experiments were performed on 114 male Sprague-Dawley derived, albino rat pups, which represented 61 litters in experimental series I and 53 litters in experimental series II. Animals were exposed for 20 h/day from conception to testing (postnatal days 11–20) to a vertical, 65-kV/m, 60-Hz electric field or sham-exposed. Recordings of the visual-evoked response (VER) were obtained using a small silver ball electrode placed epidurally over the visual cortex. Visual stimuli consisted of 10-μS light flashes delivered at 0.2 Hz. Computer-averaged VERs were obtained and power spectral analyses (fast Fourier transform) were performed on the tapered (split cosine-bell window), averaged VERs. The expected age-related changes were clearly evident; however, a detailed analysis of VER component latencies, peak-to-peak amplitude, and power spectra failed to reveal any consistent, statistically significant effect of exposure to 60-Hz electric fields.  相似文献   

15.
    
The thermographic method for determining specific absorption rate (SAR) in animals and models of tissues or bodies exposed to electromagnetic fields was applied to the problem of quantifying the current distribution in homogeneous bodies of arbitrary shape exposed to 60-Hz electric fields. The 60-Hz field exposures were simulated by exposing scale models of high electrical conductivity to 57.3-MHz VHF fields of high strength in a large 3.66 × 3.66 × 2.44-m TE101 mode resonant cavity. After exposure periods of 2–30 s, the models were quickly disassembled so that the temperature distribution (maximum value up to 7 °C) along internal cross-sectional planes of the model could be recorded thermographically. The SAR, W′, calculated from the temperature changes at any point in the scale model was used to determine the SAR, W, for a full-scale model exposed to a 60-Hz electric field of the same strength by the relation W = (60/ f2 · (σ′/σ) · W′ where f′ is the model exposure frequency, σ′ is the conductivity of the scale model at the VHF exposure frequency, and σ is the conductivity of the full-scale subject at 60 Hz. The SAR was used to calculate either the electric field strength or the current density for the full-scale subject. The models were used to simulate the exposure of the full-scale subject located either in free space or in contact with a conducting ground plane. Measurements made on a number of spheroidal models with axial ratios from 1 to 10 and conductivity from 1 to 10 s/m agreed well with theoretical predictions. Maximum current densities of 200 nA/cm2 predicted in the ankles of man models and 50 nA/cm2 predicted in the legs of pig models exposed to 60-Hz fields at 1kV/m agreed well with independent measurements on full-scale models.  相似文献   

16.
目的 建立一种高效电转染不同日龄大鼠颈上交感神经节(superior cervical sympathetic ganglion,SCG)神经元细胞的方法.提高转染后细胞的成活率、转染效率和干扰效率.方法 用传统的及经改良的神经元培养液分别培养电转染后的7日龄、14日龄和40日龄SD大鼠SCG细胞,24 h后用台盼蓝染色方法观察并计算细胞成活率;通过改变质粒DNA和siRNA与转染液比例,优化转染条件,于转染24h后在共聚焦显微镜下观察并计算转染效率或干扰效率.结果 改良培养液可使14日龄以上SD大鼠SCG细胞转染后成活率达到75%以上,明显高于传统培养液转染后的成活率(P<0.01),且结果稳定,细胞状态良好,能够满足后续实验研究的要求;优化转染条件后,DNA 的转染率及siRNA的干扰率显著提高,当DNA与转染液比例为1∶100(μg∶μL)时,细胞转染率最高;当siRNA与转染液比例为1∶50(μg∶ μL)时干扰率最高.结论 通过改良神经元培养液及优化转染条件,成功提高了电转染后细胞的成活率、转染效率和干扰效率,利用电转染方法可成功转染不同日龄SD大鼠SCG神经元.  相似文献   

17.
    
  相似文献   

18.
19.
This investigation studied the effect of 50 Hz electric and magnetic fields on the human heart. The electrocardiograms of 27 transmission-line workers and 26 male volunteers were recorded with a Holter recorder both in and outside the fields. The measurements took from half an hour to a few hours. The electric field strength varied from 0.14 to 10.21 kV/m and the magnetic flux density from 1.02 to 15.43 μT. Analysis of the ECG recordings showed that extrasystoles or arrhythmias were as frequent outside the field as in the field. In some cases a small decrease in heart rate was observed after field exposure. © 1993 Wiley-Liss, Inc.  相似文献   

20.
    
Large changes in neuronal gene expression occur in adult peripheral neurons after axonal transection. In the rat superior cervical ganglion, for example, neurons that do not normally express vasoactive intestinal peptide (VIP) or galanin do so after postganglionic nerve transection. These effects of axotomy could result from a number of aspects of the surgical procedure. To test the idea that the important variable might be the disconnection of axotomized neuronal cell bodies from their target tissues, we examined the effects of producing such a disconnection by means of the compound 6-hydroxydopamine (6-OHDA), a neurotoxin that causes degeneration of sympathetic varicosities and avoids many of the complications of surgery. Two days after 6-OHDA treatment, VIP and galanin immunoreactivities had increased two- and 40-fold, respectively. Nevertheless, these increases were substantially smaller than the 30- and 300-fold changes seen after surgical axotomy. When expression of VIP and galanin was examined at the mRNA level, however, comparable increases were found after either procedure. The results indicate that chemical destruction of sympathetic varicosities produces an equivalent signal for increasing VIP and galanin mRNA as does axonal transection. The differences in the neuropeptide levels achieved suggests that peptide expression after nerve transection is regulated both at the mRNA and protein levels. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号