首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
蛋白质糖基化作为最普遍、最重要的蛋白质修饰,一直是组学研究的焦点之一.近十几年来,N-连接糖蛋白质组学研究普遍采用的方法是将糖链与所修饰的多肽分开进行分析.该策略虽降低了分析难度,却也丢失了糖链与蛋白质糖基化位点间重要的对应关系信息.近年来,完整糖肽的质谱分析策略和方法逐步建立起来.总体而言,要实现对完整糖肽的直接质谱分析,首先需要从复杂样品中富集完整糖肽以消除非糖基化多肽对完整糖肽分析的影响,然后在质谱分析中还需要根据糖肽特性调整相应质谱分析参数,最后在后续数据分析中还需要开发相应的分析软件以完成完整糖肽中多肽序列和糖链组成或结构的鉴定.本文即从以上三个主要方面系统阐述目前N-完整糖肽分析中常用的质谱和数据分析策略和方法,并进一步在糖肽谱图识别、母离子单同位素分子质量校正、数据库选择以及假阳性率评估和控制等方面都进行了逐一探讨.完整糖肽的直接质谱分析有助于获取糖链和糖基化位点间的对应关系信息,可为生物标志物发现和疾病致病机理等研究提供更有力的糖蛋白质组学研究工具.  相似文献   

2.
蛋白质糖基化修饰的鉴定是蛋白质翻译后修饰分析中最具挑战性的任务之一,近几年尤其受到关注.快速发展的质谱技术为规模化的蛋白质糖基化修饰研究提供了有效的手段.与其他基于质谱技术的翻译后修饰鉴定相比,糖基化鉴定的难点在于糖链是大分子而且存在微观不均一性,另外糖链本身可以在串联质谱中碎裂且与肽段的碎裂规律不同,导致蛋白质组学的质谱解析方法和软件难以完整地鉴定肽段序列和糖链结构.完整N-糖肽的鉴定是糖基化分析的热点内容之一,针对N-糖肽的鉴定,近年来,人们开发了多种多样的质谱解析方法,其中包括用N-糖酰胺酶切除糖链后鉴定N-糖基化位点的方法、基于电子转运裂解的糖肽肽段鉴定、基于高能碰撞裂解与电子转运裂解联用或碰撞诱导裂解与三级谱联用的完整N-糖肽鉴定等等.本文对这些质谱解析方法进行了整理和综述,简要指出了目前完整糖肽鉴定软件存在的一些不足,展望了未来的发展方向.  相似文献   

3.
周蕾  顾建新 《生命科学》2011,(6):605-611
蛋白质的N-糖基化修饰是生物体调控蛋白质在组织和细胞中的定位、功能、活性、寿命和多样性的一种普遍的翻译后方式。N-糖基化位点是理解糖链功能的重要前提之一。应用新的糖蛋白、糖肽富集技术和质谱技术,科学家们在不同组织中完成了对N-糖基化位点的鉴定。此外,不同于经典三联子的N-糖基化序列的发现使人们对N-糖基化过程的认识向纵深发展。  相似文献   

4.
蛋白质糖基化(glycosylation)是最常见和最重要的翻译后修饰之一.大规模N-连接糖基化位点鉴定是糖蛋白质组学研究的重要组成部分,而N-连接糖肽富集是高通量N-连接糖基化位点鉴定的关键步骤.凝集素富集法和酰肼化学法是目前被广泛应用的N-连接糖肽富集技术,有报道认为两种方法具有很强的互补性,联合使用能提高糖基化位点的鉴定数目.本文以Hep G2细胞系为模型,系统比较了这两种方法的富集效率和糖蛋白鉴定数目.结果表明,虽然酰肼法的糖肽富集效率为76.6%,远高于凝集素法的54.6%,但是凝集素法却能鉴定到825个糖蛋白和1 959个N-连接糖基化位点,显著多于酰肼法富集到的522个糖蛋白和1 014个糖基化位点.并且,两种方法并未显示出显著的互补性,仅28个糖蛋白和80个糖基化位点未在凝集素法中鉴定到.  相似文献   

5.
N-糖基化作为一种重要的蛋白质翻译后修饰,在胚胎发育、癌症发生发展及免疫防御等诸多复杂的生命活动中发挥着关键作用。近年来,基于质谱的N-糖链的检测及其定量研究在动物方面取得了显著进展,相比之下,植物N-糖基化及N-糖链检测的相关研究要远远滞后,这也是制约植物糖生物学研究发展的关键瓶颈问题之一。对蛋白质N-糖链的释放、定量策略、可视化检测及其在植物中的应用进展进行了归纳总结,以期为指导后续植物N-糖链及N-糖组的定性定量检测提供参考。  相似文献   

6.
蛋白质糖基化分析方法及其在蛋白质组学中的应用   总被引:5,自引:0,他引:5  
作为一种普遍存在的翻译后修饰,糖基化对蛋白质的结构和功能有着重要影响。弄清糖基化发生发展的规律是理解蛋白质复杂多样的生物功能的一个重要前提。糖基化发生的特点决定了糖基化相关研究是对分析技术的一大挑战。作为蛋白质组学研究的重要组成部分,目前蛋白质糖基化研究的重点和难点主要集中于糖蛋白/糖肽的分离富集和糖蛋白的鉴定/糖基化位点的确定2个方面,相关技术已用于蛋白质组学水平的糖基化研究,但都还不够成熟。以生物质谱为核心、多学科交叉的蛋白质组学技术始终处于不断发展之中。基于糖基化发生规律的富集检测技术的发展、移动质子理论的提出及电子捕获裂解技术的应用必将极大地促进包括糖基化在内的翻译后修饰研究。蛋白质糖基化的研究有助于从基因组-蛋白组-糖组这样一个宏观的综合的水平观察分析生命现象,从而达到对生命现象更本质的认识。  相似文献   

7.
蛋白质的糖基化是一种最为重要的蛋白质翻译后修饰。它涉及多种生物途径和分子功能。蛋白质上糖链位点的异常改变与许多疾病有着密切的联系。已确认的癌症生物标志物中超过一半都属于糖蛋白。无论是在疾病的早期检测还是疾病的疗效评价,糖蛋白的糖链都可以作为明确的生物标志物。因此近几年,糖蛋白质组学逐渐成为一个新兴的热点研究领域,并为癌症生物标志物的发现做出了重要的贡献。目前,基于质谱技术的糖蛋白质组学可以实现对上千种糖蛋白的分析,从而获得蛋白糖基化的定性和定量方面的详细信息。本文对近些年糖蛋白质组学研究的方法和技术以及其在癌症研究中的应用进行了总结。  相似文献   

8.
蛋白质的糖基化是最重要和最普遍的蛋白质翻译后修饰之一,在生物体内起着极为重要的作用。糖蛋白质的量和(或)糖基化程度的改变以及糖链结构的改变等与许多疾病密切相关,因此定量糖蛋白质组研究已经成为一个新的热点。然而由于糖基化蛋白质所具有的独特特征,其定量面临严峻的挑战。糖蛋白质组学定量方法和技术的发展将为更好地研究糖基化蛋白质生物学功能起到重要作用。综述了基于生物质谱的糖蛋白质组定量研究的技术和方法,及其优缺点和未来的发展趋势。  相似文献   

9.
糖基化作用是真核生物蛋白翻译后修饰的重要环节,糖链对于蛋白质的结构和功能有重要影响。目前,合成带有均一糖链的糖蛋白和糖肽的策略主要有:(1)利用糖基化的氨基酸进行固相或液相合成。(2)将氨基化的寡糖链直接与预先合成的带有糖基化位点的多肽相结合。(3)利用糖基转移酶和糖苷酶的化学酶法合成策略。以上三种方法,都有各自的优点和不足。相对而言,利用微生物来源的β-N-乙酰氨基葡萄糖苷内切酶(ENGase)合成策略是目前发展较快且更具实践意义的方法。糖苷内切酶法合成策略的研究进展包括:(1)ENGase催化机制的研究。(2)糖基供体的研究。(3)ENGase突变体的研究。(4)糖苷内切酶法的应用。  相似文献   

10.
蛋白质N-糖基化修饰在植物生长发育中发挥重要作用。为探究蛋白质N-糖基化在拟南芥(Arabidopsis thaliana)整个生长周期中的变化规律以及去N-糖基化对拟南芥生根发育的影响,通过N-糖链酶解和HPLC与MALDI-TOF-MS分析解析了不同生长时期的拟南芥Col-0植株的N-糖链组成(结构和含量)变化。以...  相似文献   

11.
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.  相似文献   

12.
Proteomic techniques, such as HPLC coupled to tandem mass spectrometry (LC-MS/MS), have proved useful for the identification of specific glycosylation sites on glycoproteins (glycoproteomics). Glycosylation sites on glycopeptides produced by trypsinization of complex glycoprotein mixtures, however, are particularly difficult to identify both because a repertoire of glycans may be expressed at a particular glycosylation site, and because glycopeptides are usually present in relatively low abundance (2% to 5%) in peptide mixtures compared to nonglycosylated peptides. Previously reported methods to facilitate glycopeptide identification require either several pre-enrichment steps, involve complex derivatization procedures, or are restricted to a subset of all the glycan structures that are present in a glycoprotein mixture. Because the N-linked glycans expressed on tryptic glycopeptides contribute substantially to their mass, we demonstrate that size exclusion chromatography (SEC) provided a significant enrichment of N-linked glycopeptides relative to nonglycosylated peptides. The glycosylated peptides were then identified by LC-MS/MS after treatment with PNGase-F by the monoisotopic mass increase of 0.984 Da caused by the deglycosylation of the peptide. Analyses performed on human serum showed that this SEC glycopeptide isolation procedure results in at least a 3-fold increase in the total number of glycopeptides identified by LC-MS/MS, demonstrating that this simple, nonselective, rapid method is an effective tool to facilitate the identification of peptides with N-linked glycosylation sites.  相似文献   

13.
Chen Y  Liu M  Yan G  Lu H  Yang P 《Molecular bioSystems》2010,6(12):2417-2422
A novel one-pipeline approach is reported, which can demonstrate glycoprotein identification and obtain intact glycosylation information after glycopeptide-level enrichment, without de-glycosylation. The proposed workflow has two enrichment steps plus two proteolytic processes: enriched glycoproteins were digested to peptides by Lys-C, and then enriched again and secondly digested by trypsin. In the resulting mixture, with a reasonable complexity, intact glycopeptides could be preserved and utilized informatively for glycosylation analysis, and non-glycopeptides for protein identification. In both standard protein mixture tests and real sample analysis, the resulting glycopeptides and non-glycopeptides were proved to play their expected roles, thus more confident protein glycosylation information was obtained.  相似文献   

14.
Despite the publication of several software tools for analysis of glycopeptide tandem mass spectra, there remains a lack of consensus regarding the most effective and appropriate methods. In part, this reflects problems with applying standard methods for proteomics database searching and false discovery rate calculation. While the analysis of small post-translational modifications (PTMs) may be regarded as an extension of proteomics database searching, glycosylation requires specialized approaches. This is because glycans are large and heterogeneous by nature, causing glycopeptides to exist as multiple glycosylated variants. Thus, the mass of the peptide cannot be calculated directly from that of the intact glycopeptide. In addition, the chemical nature of the glycan strongly influences product ion patterns observed for glycopeptides. As a result, glycopeptidomics requires specialized bioinformatics methods. We summarize the recent progress towards a consensus for effective glycopeptide tandem mass spectrometric analysis.  相似文献   

15.
We previously reported on glycopeptide mapping of erythropoietin (EPO) by liquid chromatography/mass spectrometry (LC/MS). Using this method, glycopeptides in proteolytic digestion can be eluted before peptides, and are further separated on the basis of the carbohydrate structure. The detailed glycosylation at each glycosylation site can be elucidated based on mass chromatography and mass spectroscopy. In this study, we evaluated glycopeptide mapping with regard to its use in comparability assessment of glycoprotein products possessing multiple glycosylation sites. Models of closely related glycoprotein products used in this study are EPOs produced from three different sources. We previously reported that there are differences in the carbohydrate heterogeneity of these EPOs with regard to sialylation, acetylation, and sulphation patterns, using sugar mapping by LC/MS. In this paper, we demonstrated that glycopeptide mapping can distinguish site-specific glycosylation among these three EPOs and reveal the differences in acetylation, sialylation, and sulphation at each glycosylation site in one analysis. Our method can thus be useful in comparability assessment of therapeutic glycoproteins in terms of glycosylation.  相似文献   

16.
In‐gel digestion followed by LC/MS/MS is widely used for the identification of trace amounts of proteins and for the site‐specific glycosylation analysis of glycoproteins in cells and tissues. A major limitation of this technique is the difficulty in acquiring reliable mass spectra for peptides present in minute quantities and glycopeptides with high heterogeneity and poor hydrophobicity. It is considered that the SDS used in electrophoresis can interact with proteins noncovalently and impede the ionization of peptides/glycopeptides. In this study, we report an improved in‐gel digestion method to acquire reliable mass spectra of a trace amount of peptides/glycopeptides. A key innovation of our improved method is the use of guanidine hydrochloride, which forms complexes with the residual SDS molecules in the sample. The precipitation and removal of SDS by addition of the guanidine hydrochloride was successful in improving the S/N of peptides/glycopeptides in mass spectra and acquiring a more comprehensive MS/MS data set for the various glycoforms of each glycopeptide.  相似文献   

17.
Next to the identification of proteins and the determination of their expression levels, the analysis of post-translational modifications (PTM) is becoming an increasingly important aspect in proteomics. Here, we review mass spectrometric (MS) techniques for the study of protein glycosylation at the glycopeptide level. Enrichment and separation techniques for glycoproteins and glycopeptides from complex (glyco-)protein mixtures and digests are summarized. Various tandem MS (MS/MS) techniques for the analysis of glycopeptides are described and compared with respect to the information they provide on peptide sequence, glycan attachment site and glycan structure. Approaches using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) of glycopeptides are presented and the following fragmentation techniques in glycopeptide analysis are compared: collision-induced fragmentation on different types of instruments, metastable fragmentation after MALDI ionization, infrared multi-photon dissociation, electron-capture dissociation and electron-transfer dissociation. This review discusses the potential and limitations of tandem mass spectrometry of glycopeptides as a tool in structural glycoproteomics.  相似文献   

18.
An improved method for site-specific characterization of protein glycosylation has been devised using nonspecific digestion with immobilized pronase combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This procedure was demonstrated using ribonuclease B (RNase B) and kappa-casein (kappa-csn) as representative N-linked and O-linked glycoproteins, respectively. Immobilization of the pronase enzymes facilitated their removal from the glycopeptide preparations, and was found to prevent enzyme autolysis while leaving the proteolytic activities of pronase intact. Increased digestion efficiency, simplified sample preparation, and reduced sample complexity were consequently realized. To supplement this technique, a refined glycopeptide search algorithm was developed to aid in the accurate mass based assignment of N-linked and O-linked glycopeptides derived from nonspecific proteolysis. Monitoring the progress of glycoprotein digestion over time allowed detailed tracking of successive amino acid cleavages about the sites of glycan attachment, and provided a more complete protein glycosylation profile than any single representative time point. This information was further complemented by tandem MS experiments with infrared multiphoton dissociation (IRMPD), allowing confirmation of glycopeptide composition. Overall, the combination of immobilized pronase digestion, time course sampling, FTICR-MS, and IRMPD was shown to furnish an efficient and robust approach for the rapid and sensitive profiling of protein glycosylation.  相似文献   

19.
Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号