首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Mycorrhizas play key roles in important ecosystem processes and functions. Carbon (C), nitrogen (N) and phosphorus (P) concentrations and their ratios are very important foliar traits and their cycling constrains most ecosystem processes. Thus, this study addresses the influence of mycorrhizal strategies on these foliar nutrients and their response to climate change.Methods A new database was established including mycorrhizal types and leaf C mass, N mass, P mass, C: N and N: P of each plant species based on He et al. [(2008) Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–10]. The predominant type of mycorrhizal association of each plant species was classified according to the published literature and our own observations. We analyzed leaf C mass, N mass, P mass, C: N and N: P among 112 plant species in 316 samples of ascertained mycorrhizal type in the major grassland biomes of China.Important findings The results show highly significant variation among different mycorrhizal strategy types for foliar C mass, N mass and N: P. The highest foliar C mass was observed in ectotrophic mycorrhiza (ECM) type (469.8mg g-1) followed by that in arbuscular mycorrhiza (AM) type (443.884mg g-1) and nonmycorrhizal (NM) type (434.0mg g-1). The foliar N concentration was significantly higher in NM type (31.0mg g-1). However, the AM type had the greater C:N value (19) than the other types although less variation in C mass and N:P among abuscular types on AM strategy was observed. Foliar traits showed significant variation in response to precipitation (mean growing season and annual precipitation (GSP and MAP)) and temperature (mean growing season and annual temperatures (GST and MAT)) depending on different mycorrhizal strategies and arbuscular types. When the responses of all folia parameters to precipitation and temperature were compared, the influence of GSP on leaf traits was greater than the influence of GST.  相似文献   

2.
Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes   总被引:21,自引:0,他引:21  
He JS  Wang L  Flynn DF  Wang X  Ma W  Fang J 《Oecologia》2008,155(2):301-310
Leaf N and P stoichiometry covaries with many aspects of plant biology, yet the drivers of this trait at biogeographic scales remain uncertain. Recently we reported the patterns of leaf C and N based on systematic census of 213 species over 199 research sites in the grassland biomes of China. With the expanded analysis of leaf P, here we report patterns of leaf P and N:P ratios, and analyze the relative contribution of climatic variables and phylogeny in structuring patterns of leaf N:P stoichiometry. Average values of leaf P and N:P ratio were 1.9 mg g−1 and 15.3 (mass ratio), respectively, consistent with the previous observation of a higher N:P ratio in China’s flora than the global averages (ca. 13.8), resulting from a lower leaf P. Climatic variables had very little direct correlation with leaf P and N:P ratios, with growing season precipitation and temperature together explaining less than 2% of the variation, while inter-site differences and within-site phylogenetic variation explained 55 and 26% of the total variation in leaf P and N:P ratios. Across all sites and species, leaf N and P were highly positively correlated at all levels. However, the within-site, within-species covariations of leaf N and P were weaker than those across sites and across species. Leaf N and P relationships are driven by both variation between sites at the landscape scale (explaining 58% of the variance) and within sites at the local scale (explaining 24%), while the climatic factors exerted limited influence (explaining less than 3%). In addition, leaf N:P ratios in two dominant genera Kobresia and Stipa had different responses to precipitation. This study suggests that geographic variation and between-species variation, rather than climatic variation, are the major determinants of grassland foliar stoichiometry at the biome level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf‐scale traits, including foliar 13C isotope discrimination (Δ13C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty‐five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ13C and intrinsic water‐use efficiency (WUEi) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ13C/WUEi across biomes and species? (iii) To what extent does Δ13C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ13C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ13C/WUEi. Temperature‐related variables exerted larger effects than rainfall‐related variables. The relative importance of photosynthesis and stomatal conductance (gs) in determining Δ13C differed across seasons: Δ13C was more strongly regulated by gs during the dry‐season and by photosynthetic capacity during the wet‐season. Δ13C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry‐ and wet‐seasons and with moisture index (MI) during the wet‐season but was not correlated with Δ13C. Leaf Pmass showed significant positive relationship with MAP and Δ13C only during the dry‐season. For all leaf nutrient‐related traits, the relationships obtained for Δ13C with MAP or MI indicated that Δ13C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ13C across Australia.  相似文献   

4.
理解植物叶片化学计量特征及其驱动因素对认识植物种群分布规律及预测植物对环境变化响应具有重要意义。该研究采集了青藏高原东缘针叶林84个样点共29种主要针叶树种叶片, 探讨该区域常绿针叶树种叶片碳(C)、氮(N)、磷(P)化学计量特征和分布格局及其驱动因素。结果表明: (1)在科和属水平上, 不同针叶树种叶片C、N含量和C:N差异显著; 叶片N:P < 14, 表明该区域针叶树种主要受N限制。(2)叶片N、P含量在环境梯度上表现出一致的分布规律: 均呈现出随纬度和海拔增加而显著降低, 随年平均气温(MAT)和年降水量(MAP)增加而显著增加的趋势; 而叶片C含量与纬度、海拔、MATMAP均未表现出显著相关性。(3)叶片C:N、C:P呈现出与N、P含量变化相反的分布格局: 均随纬度和海拔增加而显著增加, 随MATMAP增加而显著降低; 而叶片N:P与海拔、MATMAP均无显著相关性。(4)进一步分析表明, 叶片C、N、P含量及其化学计量比的主要驱动因素不尽相同。具体而言: 土壤特性是叶片C含量和N:P变异的主要驱动因子, 而叶片N、P含量和C:N、C:P的变异主要由气候因素决定。总之, 该区域针叶树种叶片化学计量沿环境梯度的变异规律有力地支持了温度生物地球化学假说, 在一定程度上丰富了对环境变化下植物叶片化学计量分布格局及其驱动机制的认识。  相似文献   

5.
荒漠生态系统具有独特的耐旱植物种类和植物化学计量特征.本研究通过系统采集全疆63个荒漠地点的67种植物,探索荒漠植物叶碳、氮、磷(C、N、P)的计量特征及其与气候因子的关系.结果表明:荒漠植物叶C、N和P的平均含量分别为394、18.4和1.14 mg·g-1,C∶N、C∶P和N∶P平均值分别为28、419和18.灌木的N含量高于乔木和草本,灌木P含量比草本(乔木)低(高);C3植物叶的C、N、C∶P、N∶P高于C4植物.随年均降水量增加,叶C有先降低后升高的趋势,叶N、P先升高、后降低,叶C∶N、C∶P与叶N、P变化趋势相反,N∶P变化不显著;随年均温升高,叶C先降低后升高,叶N、P降低,C∶N变化不显著,C∶P、N∶P升高.年均降水量对叶片化学计量特征的影响大于年均温度和植物类型.本研究结果将有助于预测全球气候变化背景下的C、N、P元素循环规律的变化,并为干旱区生物地球化学建模提供参考和基础数据.  相似文献   

6.
2020年6—9月,以若尔盖高原纳勒乔沼泽水位下降模拟控制实验平台为依托,在若尔盖县纳勒乔沼泽原位切割1 m×1 m原状土块,原位抬升20 cm,原位模拟水位下降20 cm,研究湿地植物木里薹草碳氮磷化学计量特征对水位下降的响应。结果表明: 在整个生长季,木里薹草叶片C含量没有显著变化,N、P含量随着生长季的推移逐渐下降。水位下降后,叶片C含量在生长季的变化并不一致,在生长初期、中期水位下降导致C含量增加,生长旺期无显著变化;叶片N含量对水位下降的响应为显著升高,叶片P含量则显著降低。叶片C∶N、C∶P、N∶P在整个生长季内均表现为随季节变化而上升,木里薹草的相对生长速率与叶片C∶N呈显著正相关,与C∶P和N∶P呈显著负相关。水位下降后,叶片C∶N显著降低,C∶P和N∶P显著上升,导致木里薹草的相对生长速率显著降低。水位下降后,叶片P含量降低是木里薹草单叶质量和比叶重下降的主要调控因子。  相似文献   

7.
叶片属性是反映植物对环境变化敏感程度的重要特征,可在一定程度上预测植物对放牧干扰后的恢复能力。短花针茅(Stipa breviflora)是内蒙古荒漠草原的主要建群种。在不同放牧强度背景下的短花针茅草原开展了围封模拟放牧持续利用的实验,同时进行添加氮素和水分的恢复措施,测定了7月和9月中旬建群种短花针茅叶片的比叶面积、叶干物质含量,以及叶片全氮、叶片全磷和叶片全碳含量,分析水分和氮素添加对建群种短花针茅叶片的影响,探讨不同放牧强度下短花针茅可持续利用的氮水调控机制。结果显示,氮素和水分添加显著地增加了短花针茅叶片氮含量,降低了叶片碳氮比;放牧强度也显著地增加了叶片氮含量,且轻度放牧下的叶片氮含量(20.36 g/kg)显著高于对照(18.80 g/kg);生长末期短花针茅的比叶面积、叶片碳含量、叶片碳氮比和叶片碳磷比显著高于生长盛期,叶片氮含量和磷含量显著低于生长盛期;在生长盛期和生长末期,不同放牧强度背景下对短花针茅所采取的氮素和水分的供给措施也不同。研究结果表明在放牧背景下短期氮、水添加提高了短花针茅的叶片氮含量,特别是在生长季后期水分添加增加了叶片氮和磷含量,可进一步促进短花针茅的生长。我们的结果也表明了资源供给水平的改善有助于短花针茅的迅速恢复。  相似文献   

8.
Han W  Fang J  Guo D  Zhang Y 《The New phytologist》2005,168(2):377-385
Leaf nitrogen and phosphorus stoichiometry of Chinese terrestrial plants was studied based on a national data set including 753 species across the country. Geometric means were calculated for functional groups based on life form, phylogeny and photosynthetic pathway, as well as for all 753 species. The relationships between leaf N and P stoichiometric traits and latitude (and temperature) were analysed. The geometric means of leaf N, P, and N : P ratio for the 753 species were 18.6 and 1.21 mg g(-1) and 14.4, respectively. With increasing latitude (decreasing mean annual temperature, MAT), leaf N and P increased, but the N : P ratio did not show significant changes. Although patterns of leaf N, P and N : P ratios across the functional groups were generally consistent with those reported previously, the overall N : P ratio of China's flora was considerably higher than the global averages, probably caused by a greater shortage of soil P in China than elsewhere. The relationships between leaf N, P and N : P ratio and latitude (and MAT) also suggested the existence of broad biogeographical patterns of these leaf traits in Chinese flora.  相似文献   

9.
This study evaluated the change induced by the year season and by experimentally induced drought on foliar element stoichiometry of the predominant woody species (Quercus ilex and Erica multiflora) in two Mediterranean ecosystems, a forest and a shrubland. This study is based in two long-term (11 yr) field experiments that simulated drought throughout the annual cycle.The effects of experimental droughts were significant but weaker than the changes produced by ontogeny and seasonality. Leaf N and P concentrations were higher in spring (the main growing season) in E. multiflora and, in Q. ilex in autumn (a period of additional growth). Leaf N:P ratios were lower in spring. In Q. ilex, the highest leaf K concentrations and leaf K:P ratios, and the lowest leaf C:K and N:K ratios, occurred in summer, the season when water stress was greatest. In E. multiflora, leaf K concentrations and K:P ratios were highest, and leaf C:K and N:K ratios were lowest in the plants from the drought-treated plots.The plant capacity to change K concentrations in response to seasonality and to drought is at least as great as the capacity to change N and P concentrations. The results underscore the importance of K and its stoichiometry relative to C, N and P in dry environments. These results indicate first, that N:P ratio shifts are not uniquely related to growth rate in Mediterranean plants but also to drought, and second, that there is a need to take into account K in ecological stoichiometry studies of terrestrial plants.  相似文献   

10.
王凯博  上官周平 《生态学报》2011,31(17):4985-4991
以黄土丘陵区燕沟流域为例,分析了流域8种典型植物叶片C、N、P化学计量特征的季节变化。结果发现,8种植物叶片C含量分布范围在370.2-566.9 mg/g,N含量在9.2-39.0 mg/g,P含量在0.81-2.35 mg/g,C:N在10.5-52.9,C:P在186.8-667.5,N:P在5.7-23.0。叶片平均C、C:N和C:P在5月小于7月和9月(P<0.05),而在7月和9月差异不显著;N在5月大于7月和9月(P<0.05),7月和9月差异不显著;P在7月小于5月和9月(P<0.05),5月和9月差异不显著;N:P在9月明显小于5月和7月(P<0.05),5月和7月差异不显著。叶片C含量受季节因素影响显著,而在物种间差异不显著;叶片N、P、C:N、C:P、N:P受物种和季节因素影响均显著。因此,8种植物中沙棘、黄刺梅和虎榛子采用防御性的生活史策略;刺槐、柠条和狼牙刺采用竞争性生活史策略,铁杆蒿和茭蒿的生活史策略介于上述二者之间;尽管叶片N:P随生长季节发生明显变化,但研究区植物生长的限制性元素未随生长季节变化而改变。  相似文献   

11.
Broad-based studies of gymnosperms and angiosperms reveal consistent and functionally significant correlations among foliar traits such as leaf mass per area (LMA), maximum photosynthetic rate (A(area)), foliar nitrogen (N(area)), foliar chlorophyll (Chl) and leaf longevity. To assess the generality of these relationships, we studied 20 fern species growing in the understorey of a temperate deciduous forest. We found that foliar N(area) increases with LMA, and that foliar N(area) and A(area) are positively correlated with one another, as are foliar N(area) and Chl. The ferns in general have very low LMA compared with most seed plants; A(area), N(area) and Chl are below median values for seed plants but are not extreme. Species with overwintering fronds have significantly higher LMA than species with fronds that senesce at the end of the growing season, as well as a significantly higher C : N ratio in frond tissue and relatively high foliar N on an areal basis. Correlations among foliar traits associated with gas exchange in these forest understorey ferns are in accordance with patterns reported for seed plants, suggesting a high degree of functional constraint on the interrelationships among key elements in foliar design.  相似文献   

12.
《Global Change Biology》2018,24(8):3537-3545
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life‐span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.  相似文献   

13.
为了解同一生活型不同种植物叶片碳(C)、氮(N)、磷(P)生态化学计量学特征随季节变化的响应规律,在生长季不同月份,对阿拉善荒漠区6种主要灌木植物霸王(Zygophyllum xanthoxylum)、白刺(Nitraria tangutorum)、红砂(Reaumuria soongorica)、驼绒藜(Ceratoideslatens)、猫头刺(Oxytropis aciphylla)、沙冬青(Ammopiptanthus mongolicus)的物候期进行了连续的观察,并采集植物叶片,分析了其C、N、P含量及计量比在不同月份的变化.结果显示:1)同一生活型的6种植物的叶片C、N、P及C:N、C:P和N:P在整个生长季内的变化规律不同,且以上各指标季节间的变异系数在6种植物之间也存在差异;2)单个植物种叶片C、N、P含量及其计量比的季节变异分析显示,叶片C、N含量及C:N的季节变异较小,叶片P含量及C:P和N:P的季节变异较大,6种植物叶片C、N含量及C:N由于季节变异所计算的变异系数变化范围分别为0.60%-10.20%、6.09%-20.50%和5.87%-18.78%,6种植物叶片P含量的季节变异所产生的变异系数范围为16.43%-43.43%,叶片C:P和N:P的变异系数范围分别为8.48%-31.95%和11.86%-40.73%;3)综合分析6种植物叶片C、N、P及其计量比各指标在整个生长季节内的变异,变异系数由大到小排序为:P(28.85%)>C:P(25.02%)>N:P(22.18%)>N(14.22%)>C:N(12.48%)>C(4.62%);4)生长季节与植物种类对植物叶片C、N、P及其计量比影响的交叉分析显示,植物叶片C、N含量的变异主要受植物种类影响,植物叶片P含量的变异主要受生长季节影响,植物叶片C:N、C:P和N:P的变异都主要受植物种类影响.  相似文献   

14.
Meng Wang  Tim R. Moore 《Ecosystems》2014,17(4):673-684
Ombrotrophic bog peatlands are nutrient-deficient systems and important carbon (C) sinks yet the stoichiometry of nitrogen (N), phosphorus (P) and potassium (K), essential for plant growth and decomposition, has rarely been studied. We investigated the seasonal variation in C, N, P, and K concentrations and their stoichiometric ratios in photosynthetically active tissues of 14 species belonging to five plant functional types (PFTs) (mosses, deciduous trees/shrubs, evergreen shrubs, graminoids, and forb) at Mer Bleue bog, an ombrotrophic peatland in eastern Ontario, Canada. Although we observed variations in stoichiometry among PFTs at peak growing season, there was convergence of C:N:P:K to an average mass ratio of 445:14:1:9, indicating N and P co-limitation. Nitrogen, P, and K concentrations and stoichiometric ratios showed little seasonal variation in mosses, evergreens, and graminoids, but in forb and deciduous species were the largest in spring and decreased throughout the growing season. Variations in nutrient concentrations and stoichiometric ratios among PFTs were greater than seasonal variation within PFTs. Plants exhibit N and P co-limitation and adapt to extremely low nutrient availability by maintaining small nutrient concentrations in photosynthetically active tissues, especially for evergreen shrubs and Sphagnum mosses. Despite strong seasonal variations in nutrient availabilities, few species show strong seasonal variation in nutrient concentrations, suggesting a strong stoichiometric homeostasis at Mer Bleue bog.  相似文献   

15.
Plant nutrient stoichiometry is affected by both environmental factors and plant physiological processes. However, we know little about how small elevation gradients (influencing e.g. flooding regimes) and seasonality combine with soil physicochemical properties to influence nutrient stoichiometry in wetland plants. In this study, we examined these factors in Carex brevicuspis at Dongting Lake, China, during the non‐flooding periods in March, May and December of 2015 and February of 2016. We found that total foliar C concentration increased as elevation increased, especially during December 2015 and February 2016. At the low‐elevation site, total foliar C concentration decreased over the season, whereas it first increased and then decreased over time at higher elevations. Foliar total N and P concentrations decreased from March to May and subsequently increased throughout the season, and these concentrations were always much higher at the low‐elevation site. The C:N and C:P ratios first increased and then decreased over the season, while increasing with rising elevation. The N:P ratio was lower at the low‐elevation site, especially during May 2015 and February 2016; its variation over time differed across the elevations. A canonical correspondence analysis revealed that soil organic C, total N and soil nitrate N are important for determining C. brevicuspis stoichiometry. Our results suggest that both elevation and plant life stage have a significant influence on plant stoichiometry. This study improves our understanding of the seasonal dynamics of plant nutrients under different geographical conditions.  相似文献   

16.
为探讨黄河三角洲海岸带湿地不同水盐条件下植物叶片化学计量特征的季节动态及植物生长的限制性营养元素,以滨州贝壳堤岛与湿地国家级自然保护区内的柽柳、杠柳、酸枣3种优势灌木为研究对象,于2017-2018年的生长季(5-10月)每月定期采集叶片样品,测定叶片C、N、P含量。结果表明,生长季内3种灌木叶片C含量呈逐渐上升趋势;叶片N、P含量呈先下降后上升趋势,说明3种灌木采用防御性生活史策略适应盐生和干旱生境。3种灌木叶片C平均含量分别为(399.65±2.66)mg/g、(424.32±1.59)mg/g、(437.47±1.08)mg/g,低于全国(455.1 mg/g)及全球(461.6 mg/g)水平,呈现盐生生境下较低的植物碳储存能力。3种灌木叶片N和P平均含量分别为(30.14±0.26)mg/g和(1.81±0.03)mg/g、(23.18±0.38)mg/g和(2.06±0.04)mg/g、(27.36±0.49)mg/g和(2.01±0.03)mg/g,显著高于全国(N∶20.2 mg/g,P:1.46 mg/g)及全球(N∶19.3-20.1 mg/g,P:1.11-1.42 mg/g)水平。叶片C∶N∶P比呈先上升后下降的趋势,叶片P含量对C∶N∶P比变化具有主导作用。3种灌木叶片C∶N∶P质量比分别为246∶17∶1、224∶12∶1、237∶14∶1,说明柽柳的水盐胁迫适应能力高于杠柳和酸枣。从叶片N、P化学计量特征看,生长季内,柽柳生长一定程度上受土壤P限制,杠柳生长受到土壤N限制,酸枣生长则受土壤N、P共同限制,说明3种灌木的生物地球化学生态位发生了分化,避免了对同种资源的竞争,利于物种共生。  相似文献   

17.
《植物生态学报》2021,44(11):1138
分析植物叶片(C)、氮(N)、磷(P)含量及其比值的季节动态, 不仅有助于认识植物生长发育和养分吸收利用等生理生态过程, 也有利于认识植物化学计量的动态平衡关系。该文选择内蒙古典型温带草原18种常见植物, 在生长季的6-9月, 每半月一次进行连续采样, 在此基础上分析了叶片C、N、P含量及其比值在生长季内的变化。主要结果: 1)植物叶片C、N、P含量及其比值的季节性变化在不同功能类群间不同步, 其中叶片N、P含量的季节变化体现了明显的稀释作用。2)叶片C、N、P含量及其比值在不同功能类群间差异显著, 单子叶、多年生禾草类的叶片N、P含量显著低于双子叶和多年生杂类草植物, 而其叶片C:N、C:P则高于双子叶和多年生杂类草植物。3)叶片N、P含量显著正相关, 叶片C:N和C:P分别与N和P含量显著负相关, 可能体现了植物体内营养元素间的内在耦合机制。4)叶片N含量与C:N, 叶片P含量与C:P以及叶片N含量与P含量均呈现等速生长关系, 且等速生长关系在生长季保持稳定。  相似文献   

18.
We report the nitrogen (N), phosphorus (P), and carbon (C) stoichiometry for each of the five organ-types (leaves, aerial stems, reproductive organs, roots, and tubers) of 17 actively growing Eranthis hyemalis plants differing in size (as measured in g C). We also report the N, P, and C stoichiometry of 20 winterized tubers, which are the only perennial organs of this species. Comparisons between whole-plant and winterized N/C and P/C levels indicate that N was resorbed from aerial organs and stored in tubers by the end of the growing season. Leaves were substantial reservoirs for N and P. With few exceptions, N scaled isometrically with respect to C for each organ-type, whereas P scaled as the 3/4 power of C. Thus, N is proportional to P(3/4), which is proportional to C regardless of organ-type. Additionally, annual growth rate G of shoots (leaves and aerial stems) scaled as the -3 power of leaf N/P quotients such that G was proportional to the 3/4 power of leaf P. We suggest that these scaling relationships (together with previously reported allometric trends across herbaceous species) show that growth is constrained by organ-specific N and P allocation patterns (presumably to proteins and ribosomes, respectively).  相似文献   

19.
分析植物叶片(C)、氮(N)、磷(P)含量及其比值的季节动态, 不仅有助于认识植物生长发育和养分吸收利用等生理生态过程, 也有利于认识植物化学计量的动态平衡关系。该文选择内蒙古典型温带草原18种常见植物, 在生长季的6-9月, 每半月一次进行连续采样, 在此基础上分析了叶片C、N、P含量及其比值在生长季内的变化。主要结果: 1)植物叶片C、N、P含量及其比值的季节性变化在不同功能类群间不同步, 其中叶片N、P含量的季节变化体现了明显的稀释作用。2)叶片C、N、P含量及其比值在不同功能类群间差异显著, 单子叶、多年生禾草类的叶片N、P含量显著低于双子叶和多年生杂类草植物, 而其叶片C:N、C:P则高于双子叶和多年生杂类草植物。3)叶片N、P含量显著正相关, 叶片C:N和C:P分别与N和P含量显著负相关, 可能体现了植物体内营养元素间的内在耦合机制。4)叶片N含量与C:N, 叶片P含量与C:P以及叶片N含量与P含量均呈现等速生长关系, 且等速生长关系在生长季保持稳定。  相似文献   

20.
Nitrogen (N) and phosphorus (P) concentrations and N:P ratios in terrestrial plants and their patterns of change along environmental gradients are important traits for plant adaptation to changes. We determined the leaf N and P concentrations of Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi), a non-legume species with symbiotic N fixation (SNF), at 37 sites across northern China and explored their geographical patterns in relation to climate and soil factors. (1) The mean leaf N, P, and N:P ratio were 36.5, 2.1 mg g?1, and 17.6, respectively, higher than the mean values of most shrub species in the region. (2) Leaf N was correlated with soil mineral N in cool areas (mean annual temperature MAT <3 °C) but with temperature in warm areas (MAT >3 °C). The high leaf N and divergent leaf N–soil N relationship suggested the importance of SNF in plant N uptake; SNF increases with temperature and is probably the major N source in warm areas. (3) Leaf P was positively related to mean annual precipitation. Leaf N:P ratio was primarily driven by changes in leaf P. The high leaf P reflected the greater requirements of the N-fixing species for P. Our results represent a major advance in understanding the elemental stoichiometry of non-legume N-fixing plants, indicating high P and N requirements and a shift in N source from SNF to soil as temperature declines. This knowledge will help in assessing the habitat suitability for the species and predicting the species dynamics under environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号