首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously shown that cells isolated from the outer ears of adult mice are a source of mesenchymal stem cells that can be induced to differentiate into adipo-, osteo-, and chondrocytes. In this study, we demonstrate that ear mesenchymal stem cells (EMSC) express stromal cell-associated markers (CD44, CD73) and stem cell marker Sca-1 and can be differentiated into spontaneously contracting muscle cells. Treatment of cells with epidermal growth factor (EGF) change their morphology from fibroblast shapes into stick-like structures that show repeated spontaneous contractions. Under conditions that promote myogenic differentiation, EMSC expressed mRNA for myoD and ventricular specific myosin light chain (MLC-2v) and protein for connexin 43, sarcomeric alpha-actinin, myocyte enhancer factor 2c (MEF2c), myosin heavy chain (MyHC), myogenin, and sarco-endoplasmic reticulum Ca(2+)ATPase (SERCA) 1. However, the cells were negative for Nkx2.5, GATA4, and ANP. Intracellular Ca(2+) transients in spontaneously beating EMSC, visualized by Fluo-3AM, showed a frequency of Ca(2+) oscillations ranging over 28-59/min (mean 41.17 +/- SEM 1.54). We also demonstrated that small pieces of ear tissues (ear punches) collected from live mice provide sufficient numbers of EMSC to isolate, culture and differentiate them into myocytes. Due to the ease of acquiring an expanding repertoire of differentiated EMSC cell types by a noninvasive surgical procedure, we conclude that the ear may prove to be a potential source of autologous cells for regenerative medicine, as supported by the fact that ears are one of the best sources of cells for somatic cell nuclear transfer (SCNT).  相似文献   

3.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   

4.
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons.  相似文献   

5.
6.
Bone marrow MSCs (mesenchymal stem cells) can differentiate into various tissue cells, including epithelial cells. This presents interesting possibilities for cellular therapy, but the differentiation efficiency of MSCs is very low. We have explored specific inducing factors to improve the epithelial differentiation efficiency of MSCs. Under inducing conditions, MSCs differentiated into epithelial cells and expressed several airway epithelial markers using RTE (rat tracheal epithelial) cell secretions. Rat cytokine antibody array was used to detect cytokines of the RTE secretion components, in which 32 kinds of protein were found. Seven proteins [TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), VEGF (vascular endothelial growth factor), BDNF (brain-derived neurotrophic factor), TGFβ1 (transforming growth factor β1), MMP-2 (metalloproteinases-2), OPN (osteopontin) and activin A in RTE secretions] were assayed using ELISA kits. The four growth factors (VEGF, BDNF, TGFβ1 and activin A) were involved in regulating stem cell growth and differentiation. We speculated that these four play a vital role in the differentiation of MSCs into epithelial cells by triggering appropriate signalling pathways. To induce epithelial differentiation, MSCs were cultured using VEGF, BDNF, TGFβ1 and activin A. Differentiated MSCs were characterized both morphologically and functionally by their capacity to express specific markers for epithelial cells. The data demonstrated that MSCs can differentiate into epithelial cells induced by these growth factors.  相似文献   

7.

Background Information

Human gingival tissues are prone to hyperplasia under inflammatory stimuli. We have identified gingival tissue‐specific mesenchymal stem cells (GMSCs) and found their functional change being correlated with drug‐induced gingival hyperplasia. However, whether these cells exhibit characteristics of pro‐fibrotic phenotype under inflammatory condition remains unknown.

Results

GMSCs isolated from human normal gingival tissues (N‐GMSC) and inflammatory gingival tissues (I‐GMSC) were cultured in vitro, representative cytokines were added to simulate the in vivo inflammatory environment. Under the influence of the inflammatory cytokines, GMSCs exhibited higher rate of proliferation than those under normal condition, while their potential for osteogenic and adipogenic differentiation was suppressed. The expression of matrix metalloproteinases (MMP)‐1, MMP‐2, IL‐1, IL‐6, TNF‐α and type 1 collagen was significantly higher in I‐GMSCs than in N‐GMSCs. Furthermore, compared with dental pulp stem cells, GMSCs showed different pattern of gene expression and extracellular matrix formation in inflammatory environment.

Conclusions

Inflammatory microenvironment induces GMSCs to differentiate towards a pro‐fibrotic phenotype, which could underlie the hyperplastic appearance of inflammatory gingiva.  相似文献   

8.
We have previously demonstrated that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area. HAP stem cells have been previously shown to differentiate to neurons, glial cells, keratinocytes, smooth-muscle cells, melanocytes and cardiac-muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal cord regeneration in mouse models, differentiating to Schwann cells and neurons. In previous studies, we established an efficient protocol for the differentiation of cardiac-muscle cells from mouse HAP stem cells. In the present study, we isolated the upper part of human hair follicles containing human HAP (hHAP) stem cells. The upper parts of human hair follicles were suspended in DMEM containing 10% FBS where they differentiated to cardiac-muscle cells as well as neurons, glial cells, keratinocytes and smooth-muscle cells. This method is appropriate for future use with human hair follicles to produce hHAP stem cells in sufficient quantities for future heart, nerve and spinal cord regeneration in the clinic.  相似文献   

9.
10.
Although the primary biological function of retinal photoreceptors is to absorb light and provide visual information, extensive exposure to intense light could increase the risk of phototoxic reactions mediated by products of rhodopsin bleaching that might accumulate in photoreceptor outer segments (POS). The phototoxicity of POS, isolated from bovine retinas, was examined in cultured retinal pigment epithelium cells (ARPE-19) containing phagocytised POS and in selected model systems by determining POS ability to photogenerate singlet oxygen, and photoinduce oxidation of cholesterol and serum albumin. Bleaching of rhodopsin-rich POS with green light resulted in the formation of retinoid products exhibiting distinct absorption spectra in the near-UV. Irradiation of POS-fed ARPE-19 cells with blue light reduced their survival in a dose-dependent manner with the effect being stronger for cells containing prebleached POS. The specific and non-specific phagocytic activity of ARPE-19 cells was inhibited by sub-lethal photic stress mediated by phagocytised POS. The oxidising ability of POS photobleaching products was demonstrated both in a model system consisting of serum albumin and in ARPE-19 cells. Distinct photooxidation of proteins, mediated by POS, was observed using coumarin boronic acid as a sensitive probe of protein hydroperoxides. Irradiation of POS with blue light also induced oxidation of liposomal cholesterol as determined by HPLC-EC(Hg). Time-resolved singlet oxygen phosphorescence demonstrated the efficiency of retinoids, extracted from POS by chloroform-methanol treatment, to photogenerate singlet oxygen. The results indicate that photic stress mediated by POS photobleaching products could inhibit phagocytic efficiency of RPE cells and, ultimately, compromise their important biological functions.  相似文献   

11.
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.  相似文献   

12.
It remains elusive as to what bone marrow (BM) cell types infiltrate into injured and/or diseased tissues and subsequently differentiate to assume the phenotype of residential cells, for example, neurons, cardiac myocytes, keratocytes, etc., to repair damaged tissue. Here, we examined the possibility of whether BM cell invasion via circulation into uninjured and injured corneas could assume a keratocyte phenotype, using chimeric mice generated by transplantation of enhanced green fluorescent protein (EGFP)(+) BM cells into keratocan null (Kera(-/-)) and lumican null (Lum(-/-)) mice. EGFP(+) BM cells assumed dendritic cell morphology, but failed to synthesize corneal-specific keratan sulfate proteoglycans, that is KS-lumican and KS-keratocan. In contrast, some EGFP(+) BM cells introduced by intrastromal transplantation assumed keratocyte phenotypes. Furthermore, BM cells were isolated from Kera-Cre/ZEG mice, a double transgenic mouse line in which cells expressing keratocan become EGFP(+) due to the synthesis of Cre driven by keratocan promoter. Three days after corneal and conjunctival transplantations of such BM cells into Kera(-/-) mice, green keratocan positive cells were found in the cornea, but not in conjunctiva. It is worthy to note that transplanted BM cells were rejected in 4 weeks. MSC isolated from BM were used to examine if BM mesenchymal stem cells (BM-MSC) could assume keratocyte phenotype. When BM-MSC were intrastromal-transplanted into Kera(-/-) mice, they survived in the cornea without any immune and inflammatory responses and expressed keratocan in Kera(-/-) mice. These observations suggest that corneal intrastromal transplantation of BM-MSC may be an effective treatment regimen for corneal diseases involving dysfunction of keratocytes.  相似文献   

13.
Mesenchymal stem cells(MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T(Treg) and B(Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.  相似文献   

14.
15.
Embryonal stem (ES) cells that are homozygous null for the beta(1) integrin subunit fail to differentiate into keratinocytes in vitro but do differentiate in teratomas and wild-type/beta(1)-null chimeric mice. The failure of beta(1)-null ES cells to differentiate in culture might be the result of defective extracellular matrix assembly or reduced sensitivity to soluble inducing factors. By culturing embryoid bodies on dead, deepidermized human dermis (DED) we showed that epidermal basement membrane did not induce beta(1)-null ES cells to undergo keratinocyte differentiation and did not stimulate the differentiation of wild-type ES cells. Coculture with epidermal keratinocytes also had no effect. However, when human dermal fibroblasts were incorporated into DED, the number of epidermal cysts formed by wild-type ES cells increased dramatically, and small groups of keratin 14-positive cells differentiated from beta(1)-null ES cells. Fibroblast-conditioned medium stimulated differentiation of K14-positive cells in wild-type and beta(1)-null embryoid bodies. Of a range of growth factors tested, KGF, FGF10, and TGFalpha all stimulated differentiation of keratin 14-positive beta(1)-null cells, and KGF and FGF10 were shown to be produced by the fibroblasts used in coculture experiments. The effects of the growth factors on wild-type ES cells were much less pronounced, suggesting that the concentrations of inducing factors already present in the medium were not limiting for wild-type cells. We conclude that the lack of beta(1) integrins decreases the sensitivity of ES cells to soluble factors that induce keratinocyte differentiation.  相似文献   

16.
Summary Blastoderm explants fromBrachydanio rerio (Teleostei: Cyprinidae) high blastulas exhibited limited differentiation of optic structures in culture. A number of explants showed migration of pigmented retinal epithelial cells and formation of monolayers. The findings permit comparative studies in vitro on phenomena pertaining to pigmented retinal epithelial cell morphology, function, and differentiation. This investigation was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

17.
维生素C为6碳多羟化合物,在化学反应中易失去电子,依次生成半脱氧抗坏血酸和脱氧抗坏血酸。因此,维生素C可作为自由基清除剂,能迅速与超氧阴离子、氢化氧基、过氧化氢、羟自由基反应,生成抗坏血酸自由基。蓝光作为一种短波长,靠近紫外线频段的光,具有能量高的特点,是自然界中导  相似文献   

18.
19.
In order for the retina to function properly, photoreceptor cell outer segments must be in contact with the adjacent retinal pigmented epithelium (RPE). A mouse model homozygous for the vitiligo mutation of the microphthalmia (Mitf) gene manifests disruption of the outer segment/RPE interdigitation and demonstrates progressive loss of the photoreceptor cells. The mouse nevertheless has near normal levels of rhodopsin for many weeks and it is not known whether there is an in vivo loss of adhesion or whether the disruption is visible following tissue processing for histology. To assess this, a mechanical separation experiment was performed in which neural retinas were peeled free from the RPE and examined for the amount of pigment adherent to them. The peeling experiment indicated that control neural retinas retained significant amounts of adherent pigment at all ages examined. Neural retinas of mutant mice at age 2 weeks demonstrated adherent pigment, but older animals retained minimal pigment. Scanning electron microscopy indicated that the RPE cells of control mice were markedly damaged upon peeling and displayed different planes of cleavage, whereas those of mutants showed minimal cellular damage upon peeling, suggestive of decreased adhesion. A recombination experiment revealed that the mutant RPE/eyecup could reappose mutant and control retinas under in vitro conditions, suggesting that RPE fluid transport abilities were intact. The data provide the first direct experimental evidence that the Mitfvit mutant mouse has a naturally occurring retinal detachment and hence support its value as a model for studies of retina/RPE adhesion.  相似文献   

20.
Human umbilical cord blood (CB) is a potential source for mesenchymal stem cells (MSC) capable of forming specific tissues, for example, bone, cartilage, or muscle. However, difficulty isolating MSC from CB (CB‐MSC) has impeded their clinical application. Using more than 450 CB units donated to two public CB banks, we found that successful cell recovery fits a hyper‐exponential function of time since birth with very high fidelity. Additionally, significant improvement in the isolation of CB‐MSC was achieved by selecting cord blood units having a volume ≥90 ml and time ≤2 h after donor's birth. This resulted in 90% success in isolation of CB‐MSC by density gradient purification and without a requirement for immunoaffinity methods as previously reported. Using MSC isolated from bone marrow (BM‐MSC) and adipose tissue (AT‐MSC) as reference controls, we observed that CB‐MSC exhibited a higher proliferation rate and expanded to the order of the 1 × 109 cells required for cell therapies. CB‐MSC showed karyotype stability after prolonged expansion. Functionally, CB‐MSC could be more readily induced to differentiate into chondrocytes than could BM‐MSC and AT‐MSC. CB‐MSC showed immunosuppressive activity equal to that of BM‐MSC and AT‐MSC. Collectively, our data indicate that viable CB‐MSC could be obtained consistently and that CB should be reconsidered as a practical source of MSC for cell therapy and regenerative medicine using the well established CB banking system. J. Cell. Biochem. 112: 1206–1218, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号