首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150 kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65-82 kb containing 12-19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R (2) = 0.4543, P = 0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS(1455) that targets the SNP(1455) in Ma1 showed that the CAPS(1455A) allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma for low pH or high acidity in apple.  相似文献   

7.
8.
9.

Background  

Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated.  相似文献   

10.
刘伟  李立  叶桦  屠伟 《生物工程学报》2017,33(11):1791-1801
高通量生物监测方法可以同时检测同一样本的上千个参数,其在生物医学中的应用越来越广泛,但如何系统地分析并从高通量数据中挖掘有用信息,仍是一项重要的课题。网络生物学的出现使人们对复杂生物系统有了更深刻的理解,组织/细胞功能执行具有模块化特点。目前,相关网络(Correlation network)被越来越多地应用于生物信息学,权重基因共表达网络分析(Weighted gene co-expression network analysis,WGCNA)是描述样品基因表达相关模式的一种系统生物学工具。在此,对WGCNA在疾病分型及预后、发病机制和其他相关领域研究进展作一个较为系统的综述。首先,对WGCNA的原理、分析流程和优势缺点进行总结。其次,介绍如何用WGCNA研究疾病、正常组织、药物、进化和基因组注释。最后,结合新高通量技术展望WGCNA应用新空间。以期科研工作者能够对WGCNA的应用有所了解。  相似文献   

11.
Wang  Lu  Jiang  Xiaohan  Zhao  Li  Wang  Furong  Liu  Yudi  Zhou  Hui  He  Huaping  Han  Yuepeng 《Plant molecular biology》2021,105(3):321-332
Plant Molecular Biology - A candidate gene, designate PpRPH, in the D locus was identified to control fruit acidity in peach. Fruit acidity has a strong impact on organoleptic quality of fruit....  相似文献   

12.
13.
14.
15.
16.

Background  

Extensive biomedical studies have shown that clinical and environmental risk factors may not have sufficient predictive power for cancer prognosis. The development of high-throughput profiling technologies makes it possible to survey the whole genome and search for genomic markers with predictive power. Many existing studies assume the interchangeability of gene effects and ignore the coordination among them.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号