首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

3.
4.
Collagen immunotyping by indirect immunofluorescence was performed in order to investigate the sequential development of bone formation. Osseous tumors were obtained after subcutaneous injection of 3/A/1D-1 teratocarcinoma cell line into 129/Sv mice (Nicolas et al., 1980). Frozen sections of developing tumors were incubated with specific antibodies directed against Types I, II, III, IV, and IX collagens. On Day 9, the expression of Type I and Type III collagens was correlated with the proliferation of mesenchymal cells. From Day 10, chondrogenesis was characterized by the occurrence of cartilaginous collagens, Types II and IX, in the cartilage matrix. Type IV collagen was also detected in focal areas and revealed vascular invasion of the tumor. On Day 13, osteogenesis was demonstrated by the presence of Type I collagen in the bone matrix coating the surfaces. Immunolocalization of Type III collagen on the hemopoietic elements corresponded with the bone remodeling. The sequential transitions of collagen types confirm the development of an endochondral bone tumor. These results suggest that 3/A/1D-1 teratocarcinoma cell line constitutes a valuable system for in vitro study of endochondral bone formation and cell differentiation.  相似文献   

5.
Ovotransferrin expression during chick embryo tibia development has been investigated in vivo by immunocytochemistry and in situ hybridization. Ovotransferrin was first observed in the 7 day cartilaginous rudiment. At later stages, the factor was localized in the articular zone of the bone epiphysis and in the bone diaphysis where it was concentrated in hypertrophic cartilage, in zones of cartilage erosion and in the osteoid at the chondro-bone junction. When the localization of the ovotransferrin receptors was investigated, it was observed that chondrocytes at all stages of differentiation express a low level of the oviduct (tissue) specific receptor. Interestingly, high levels of the receptor were detectable in the 13-d old tibia in the diaphysis collar of stacked-osteoprogenitor cells and in the layer of derived osteoblasts. High levels of oviduct receptor were also observed in the primordia of the menisci. Metabolic labeling of proteins secreted by cultured chondrocytes and osteoblasts and Northern blot analysis of RNA extracted from the same cells confirmed and completed the above information. Ovotransferrin was expressed by in vitro differentiating chondrocytes in the early phase of the culture and, at least when culture conditions allowed extracellular matrix assembly, also by hypertrophic chondrocytes and derived osteoblast-like cells. Osteoblasts directly obtained from bone chips produced ovotransferrin only at the time of culture mineralization. By Western blot analysis, oviduct receptor proteins were detected at a very low level in extract from differentiating and hypertrophic chondrocytes and at a higher level in extract from hypertrophic chondrocytes undergoing differentiation to osteoblast-like cells and from mineralizing osteoblasts. Based on these results, the existence of autocrine and paracrine loops involving ovotransferrin and its receptor during chondrogenesis and endochondral bone formation is discussed.  相似文献   

6.
7.
8.
We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.  相似文献   

9.
10.
11.
12.
13.
During endochondral bone formation, vascular invasion initiates the replacement of avascular cartilage by bone. We demonstrate herein that the cartilage-specific overexpression of VEGF-A164 in mice results in the hypervascularization of soft connective tissues away from cartilage. Unexpectedly, perichondrial tissue remained avascular in addition to cartilage. Hypervascularization of tissues similarly occurred when various VEGF-A isoforms were overexpressed in the chick forelimb, but also in this case perichondrial tissue and cartilage were completely devoid of vasculature. However, following bony collar formation, anti-angiogenic properties in perichondrial tissue were lost and perichondrial angiogenesis was accelerated by VEGF-A146, VEGF-A166, or VEGF-A190. Once the perichondrium was vascularized, osteoclast precursors were recruited from the circulation and the induction of MMP9 and MMP13 can be observed in parallel with the activation of TGF-β signaling. Neither perichondrial angiogenesis nor the subsequent cartilage vascularization was found to be accelerated by the non-heparin-binding VEGF-A122 or by the VEGF-A166ΔE162-R166 mutant lacking a neuropilin-binding motif. Hence, perichondrial angiogenesis is a prerequisite for subsequent cartilage vascularization and is differentially regulated by VEGF-A isoforms.  相似文献   

14.
15.
While recent work has implicated Tbx20 in myocardial maturation and proliferation, the role of Tbx20 in heart valve development remains relatively unknown. Tbx20 expression was manipulated in primary avian endocardial cells in order to elucidate its function in developing endocardial cushions. Tbx20 gain of function was achieved with a Tbx20-adenovirus, and endogenous Tbx20 expression was inhibited with Tbx20-specific siRNA in cultured endocardial cushion cells. With Tbx20 gain of function, the expression of chondroitin sulfate proteoglycans (CSPG), including aggrecan and versican, was decreased, while the expression of the matrix metalloproteinases (MMP) mmp9 and mmp13 was increased. Consistent results were observed with Tbx20 loss of function, where the expression of CSPG genes increased and MMP genes decreased. In addition, cushion mesenchyme proliferation increased with infection of a Tbx20-adenovirus and decreased with transfection of Tbx20-specfic siRNA. Furthermore, BMP2 treatment resulted in increased Tbx20 expression in endocardial cushion cells, and loss of Tbx20 led to increased Tbx2 and decreased N-myc gene expression. Taken together, these data support a role for Tbx20 in repressing extracellular matrix remodeling and promoting cell proliferation in mesenchymal valve precursor populations in endocardial cushions during embryonic development.  相似文献   

16.
Endochondral ossification is a basic physiological process in limb development and is central to bone repair and linear growth. Factors which regulate endochondral ossification include several biophysical and biochemical agents and are of interest from clinical and biological perspectives. One of these agents, electric stimulation, has been shown to result in enhanced synthesis of extracellular matrix, calcification, and bone formation in a number of experimental systems and is the subject of this review. The effects of electric stimulation have been studied in embryonic limb rudiments, growth plates, and experimental endochondral ossification induced with decalcified bone matrix and, in all these models, endochondral ossification has been enhanced. It is not known definitively whether electric fields stimulate cell differentiation or modulate an increased number of molecules synthesized by committed cell population and this is a fertile area of current study.  相似文献   

17.
The role of bone morphogenetic proteins in endochondral bone formation   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) were originally identified as proteins capable of inducing endochondral bone formation when implanted at extraskeletal sites. BMPs have diverse biological activities during early embryogenesis and various aspects of organogenesis. BMPs bind to BMP receptors on the cell surface, and these signals are transduced intracellularly by Smad proteins. BMP signal pathways can be inhibited by both extra- and intracellular mechanisms. As for skeletal development, genetic studies suggest that BMPs are skeletal mesoderm inducers. Recent studies of tissue-specific activation and inactivation of BMP signals have revealed that BMP signals control proliferation and differentiation of chondrocytes, differentiation of osteoblasts and bone quality. These findings may contribute not only to understanding of bone biology and pathology, but also to improvement of the clinical efficacy of BMPs.  相似文献   

18.
While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants has hindered research efforts to study the role of this organelle at later developmental stages. Thus, to investigate the role of cilia during limb development, we generated a conditional allele of the IFT protein Ift88 (polaris). Using the Cre-lox system, we disrupted cilia on different cell populations within the developing limb. While deleting cilia in regions of the limb ectoderm had no overt effect on patterning, disruption in the mesenchyme resulted in extensive polydactyly with loss of anteroposterior digit patterning and shortening of the proximodistal axis. The digit patterning abnormalities were associated with aberrant Shh pathway activity, whereas defects in limb outgrowth were due in part to disruption of Ihh signaling during endochondral bone formation. In addition, the limbs of mesenchymal cilia mutants have ectopic domains of cells that resemble chondrocytes derived from the perichondrium, which is not typical of Indian hedgehog mutants. Overall these data provide evidence that IFT is essential for normal formation of the appendicular skeleton through disruption of multiple signaling pathways.  相似文献   

19.
20.
Retinoids have long been known to influence skeletogenesis but the specific roles played by these effectors and their nuclear receptors remain unclear. Thus, it is not known whether endogenous retinoids are present in developing skeletal elements, whether expression of the retinoic acid receptor (RAR) genes alpha, beta, and gamma changes during chondrocyte maturation, or how interference with retinoid signaling affects skeletogenesis. We found that immature chondrocytes present in stage 27 (Day 5.5) chick embryo humerus exhibited low and diffuse expression of RARalpha and gamma, while RARbeta expression was strong in perichondrium. Emergence of hypertrophic chondrocytes in Day 8-10 embryo limbs was accompanied by a marked and selective up-regulation of RARgamma gene expression. The RARgamma-rich type X collagen-expressing hypertrophic chondrocytes lay below metaphyseal prehypertrophic chondrocytes expressing Indian hedgehog (Ihh) and were followed by mineralizing chondrocytes undergoing endochondral ossification. Bioassays revealed that cartilaginous elements in Day 5.5, 8.5, and 10 chick embryo limbs all contained endogenous retinoids; strikingly, the perichondrial tissues surrounding the cartilages contained very large amounts of retinoids. Implantation of beads filled with retinoid antagonist Ro 41-5253 or AGN 193109 near the humeral anlagens in stage 21 (Day 3.5) or stage 27 chick embryos severely affected humerus development. In comparison to their normal counterparts, antagonist-treated humeri in Day 8.5-10 chick embryos were significantly shorter and abnormally bent; their diaphyseal chondrocytes had remained prehypertrophic Ihh-expressing cells, did not express RARgamma, and were not undergoing endochondral ossification. Interestingly, formation of an intramembranous bony collar around the diaphysis was not affected by antagonist treatment. Using chondrocyte cultures, we found that the antagonists effectively interfered with the ability of all-trans-retinoic acid to induce terminal cell maturation. The results provide clear evidence that retinoid-dependent and RAR-mediated mechanisms are required for completion of the chondrocyte maturation process and endochondral ossification in the developing limb. These mechanisms may be positively influenced by cooperative interactions between the chondrocytes and their retinoid-rich perichondrial tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号