首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terminal drought and seed priming improves drought tolerance in wheat   总被引:1,自引:0,他引:1  
Plants retain the preceding abiotic stress memory that may aid in attainment of tolerance to subsequent stresses. This study was conducted to evaluate the influence of terminal drought memory (drought priming) and seed priming in improving drought tolerance in wheat (Triticum aestivum L.). During first growing season, wheat was planted in field under optimal (well-watered) and drought stress imposed at reproductive stage (BBCH growth stage 49) until maturity (BBCH growth stage 83). Seeds collected from both sources were subjected to hydropriming or osmopriming (with 1.5% CaCl2 solution); while, dry seed was taken as control. Treated and control seeds, from both sources, were sown in soil filled pots. After the completion of seedling emergence, pots were maintained at 50% water holding capacity (drought) or 100% water holding capacity (well-watered). Drought stress suppressed the plant growth (2–44%), perturbed water relations (1–18%) and reduced yield (192%); however, osmolytes accumulation (3–14%) and malondialdehyde contents (26–29%) were increased under drought. The crop raised from the seeds collected from terminal drought stressed plants had better growth (5–63%), improved osmolyte accumulation (13–45%), and lower lipid peroxidation (3%) than the progeny of well-watered crop. Seed priming significantly improved the crop performance under drought stress as compared to control. However, osmopriming was more effective than hydropriming in this regard as it improved leaf area (9–43%), tissue water status (2–47%), osmolytes accumulation (6–48%) and grain yield (14–79%). In conclusion, terminal drought induced modifications in seed composition and seed priming improved transgenerational drought tolerance through improvement in tissue water status and osmolytes accumulation, and decrease in lipid peroxidation.  相似文献   

2.
Yue B  Xue W  Xiong L  Yu X  Luo L  Cui K  Jin D  Xing Y  Zhang Q 《Genetics》2006,172(2):1213-1228
Drought tolerance (DT) and drought avoidance (DA) are two major mechanisms in drought resistance of higher plants. In this study, the genetic bases of DT and DA at reproductive stage in rice were analyzed using a recombinant inbred line population from a cross between an indica lowland and a tropical japonica upland cultivar. The plants were grown individually in PVC pipes and two cycles of drought stress were applied to individual plants with unstressed plants as the control. A total of 21 traits measuring fitness, yield, and the root system were investigated. Little correlation of relative yield traits with potential yield, plant size, and root traits was detected, suggesting that DT and DA were well separated in the experiment. A genetic linkage map consisting of 245 SSR markers was constructed for mapping QTL for these traits. A total of 27 QTL were resolved for 7 traits of relative performance of fitness and yield, 36 QTL for 5 root traits under control, and 38 for 7 root traits under drought stress conditions, suggesting the complexity of the genetic bases of both DT and DA. Only a small portion of QTL for fitness- and yield-related traits overlapped with QTL for root traits, indicating that DT and DA had distinct genetic bases.  相似文献   

3.
Agricultural drought has a substantial impact on crop yields and, thus, food security within the context of global climate change. Therefore, efforts should focus on agricultural drought detection and monitoring. Agricultural drought is identified as unusually dry conditions in which severe water stress impedes crop growth. Thus, the crop water deficit severity and rarity are both key factors in agricultural drought detection and are rarely considered simultaneously in existing drought indices. To overcome this limitation, an integrated agricultural drought index (IADI) based on drought rarity and evapotranspiration is proposed. As an important grain production base, Northeast China has suffered from frequent droughts in recent years, demonstrating an urgent need for accurate drought monitoring. In this study, the superiority of the IADI as an agricultural drought indicator through the detection of the severity and rarity was tested using the drought disaster area (DDA) and grain yield, and its performance was compared to that of the evaporative drought index (EDI), an indicator that accounts for only the water deficit severity. The response of agricultural drought to meteorological drought and its impact on the grain yield were further analyzed. The results showed that (1) the IADI can effectively capture the drought variability and identify drought events by combining the detection of the severity and rarity. (2) The R2 value between the DDA and IADI (0.72) was higher than that with the EDI (0.50), and the same result was found in a comparative analysis using the grain yield, showing that the IADI is a suitable indicator for agricultural drought assessment. (3) Severe and extreme meteorological droughts and extreme agricultural droughts in western Jilin and western Liaoning were more frequent than in other regions, highlighting the agricultural drought tendency and sensitivity to precipitation deficit in this region. (4) The impacts of agricultural drought on grain yield in three provinces of Northeast China vary greatly during the crop-growing period, with the most significant impacts occurring from May to July. Therefore, this period represents the critical crop water requirement period, and timely irrigation should be ensured during this period.  相似文献   

4.
秦斐斐  慈敦伟 《生态学报》2017,37(24):8486-8498
防雨棚内设盆栽试验,设置对照(Control,75%田间持水量)、干旱胁迫(D,35%)、重复干旱胁迫(D_D,35%)3个处理,探讨花生幼苗对预干旱胁迫的适应和记忆响应,分析预干旱对缓解重复干旱胁迫危害的生理作用。结果表明,与干旱胁迫处理相比,重复干旱胁迫提高了叶片的相对含水量,减少脯氨酸的积累,降低MDA和O·_2~-含量;抗氧化酶SOD、CAT活性降低,其中POD活性降低最为明显,并在复水后恢复到与对照相同水平或低于对照。与正常水分的对照相比,干旱胁迫显著降低叶片光合速率(P_N)、最大光合势能(P_C)、最大光量子产量(Y_Q),但重复干旱处理在重复干旱胁迫时期和复水后P_N、P_C和Y_Q均高于干旱处理。预干旱胁迫导致光合和气孔导度滞后面积、滞后率(H_P和H_g)增加,经过预干旱胁迫后,重复干旱显著降低光合和气孔导度滞后面积和滞后率。预干旱胁迫提高植株在重复干旱胁迫下叶片含水量,减轻重复干旱对植株造成的生理伤害,在光合作用上提高对重复干旱的抵御能力,并在复水后快速恢复到正常水分条件下植株生长水平,减少干旱对植株的不利影响。因此,预干旱胁迫促使花生幼苗具备适应或可记忆初始胁迫的能力,重复干旱胁迫时表现更为迅速和强烈的生理防御和快速的生理恢复机制。  相似文献   

5.
6.
《Current biology : CB》2008,18(21):R983-R985
  相似文献   

7.
Drought and drought tolerance   总被引:10,自引:0,他引:10  
Drought tolerance is a nebulous term that becomes more nebulous the more closely we look at it, much as a newspaper photograph does when viewed through a magnifying glass. From the vantage point of an ecologist the features that distinguish xerophytic from mesophytic vegetation are clear. We can all tell that a cactus is more drought tolerant than a carnation. But when we look at crop plants, the features that confer drought tolerance are far from clear. The main reason for the contrast is that the traits we associate with xerophytes typically concern survival during drought, whereas with crops we are concerned with production—and insofar as the term drought tolerance has any useful meaning in an agricultural context, it must be defined in terms of yield in relation to a limiting water supply.Further, with the well-developed major crop plants, those of us trying to increase water-limited yield would be pleased to achieve improvements of just a few percent in environments that are highly variable in their water supply. This variability often means that several seasons are required to demonstrate the advantages of an allegedly improved cultivar. Traits that confer drought tolerance in such circumstances are subtle, and may manifest themselves in some types of drought but not in others. Indeed the most influential characters often have no direct connection to plant water relations at all, as I elaborate on below.I will concentrate on the agricultural rather than the natural environment (although there are no doubt lessons for us still to learn from analysing the behaviour of natural vegetation—see Monneveux, this volume), and will argue that drought tolerance is best viewed at an ontogenetic time scale—i.e. at the time scale of the development of the crop—weeks to months for an annual crop. The timing of the main developmental changes, like floral initiation and flowering, and the rate of development of leaf area in relation to the seasonal water supply, are the most important variables at this time scale. Occasionally though, rapid changes in the environment, such as a sudden large rise in air temperature and humidity deficit, perhaps associated with hot dry winds, make appropriate short-term physiological and biochemical responses essential for the survival of the crop. These short term responses may be amenable to cellular and sub-cellular manipulation, especially if the sudden environmental deterioration occurs at especially sensitive stages in development such as pollen meiosis or anthesis.Purists insist that drought is a meteorological term that refers only substantial to periods in which rainfall fails to keep up with potential evaporation. Within the spirit of this meeting it is appropriate to interpret the term more loosely than this definition, and to define it as circumstances in which plants suffer reduced growth or yield because of insufficient water supply, or because of too large a humidity deficit despite there being seemingly adequate water in the soil.  相似文献   

8.
水分胁迫对山黧豆萌发过程中β—ODAP和氨基酸的影响   总被引:2,自引:0,他引:2  
山黧豆(Lathyrus sativus)种子在萌发过程中,根芽中β-N-草酰基-L-2,3-二氨基丙酸(β-ODAP)6d前逐渐增加,尔后不断下降;在水分胁迫条件下,β-ODAP和游离氨基酸含量随水分胁迫的增加而上升,子叶中β-ODAP在3d前高于根芽,然后下降并低于根芽,子叶中β-ODAP含量随着胁迫的增加而降低。  相似文献   

9.
10.
11.
Monitoring and estimating drought impact on plant physiological processes over large regions remains a major challenge for remote sensing and land surface modeling, with important implications for understanding plant mortality mechanisms and predicting the climate change impact on terrestrial carbon and water cycles. The Orbiting Carbon Observatory 3 (OCO-3), with its unique diurnal observing capability, offers a new opportunity to track drought stress on plant physiology. Using radiative transfer and machine learning modeling, we derive a metric of afternoon photosynthetic depression from OCO-3 solar-induced chlorophyll fluorescence (SIF) as an indicator of plant physiological drought stress. This unique diurnal signal enables a spatially explicit mapping of plants' physiological response to drought. Using OCO-3 observations, we detect a widespread increasing drought stress during the 2020 southwest US drought. Although the physiological drought stress is largely related to the vapor pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as the drought intensifies and VPD sensitivity develops differently for shrublands and grasslands. Our findings highlight the potential of using diurnal satellite SIF observations to advance the mechanistic understanding of drought impact on terrestrial ecosystems and to improve land surface modeling.  相似文献   

12.
Viruses are obligate intracellular symbionts. Plant viruses are often discovered and studied as pathogenic parasites that cause diseases in agricultural plants. However, here it is shown that viruses can extend survival of their hosts under conditions of abiotic stress that could benefit hosts if they subsequently recover and reproduce. Various plant species were inoculated with four different RNA viruses, Brome mosaic virus (BMV), Cucumber mosaic virus (CMV), Tobacco mosaic virus and Tobacco rattle virus. The inoculated plants were stressed by withholding water. The onset of drought symptoms in virus-infected plants was compared with that in the plants that were inoculated with buffer (mock-inoculated plants). Metabolite profiling analysis was conducted and compared between mock-inoculated and virus-infected plants before and after being subjected to drought stress. In all cases, virus infection delayed the appearance of drought symptoms. Beet plants infected with CMV also exhibited significantly improved tolerance to freezing. Metabolite profiling analysis showed an increase in several osmoprotectants and antioxidants in BMV-infected rice and CMV-infected beet plants before and after drought stress. These results indicate that virus infection improves plant tolerance to abiotic stress, which correlates with increased osmoprotectant and antioxidant levels in infected plants.  相似文献   

13.
马尾松菌根化苗木对干旱的生理响应及抗旱性评价   总被引:3,自引:0,他引:3  
采用温室盆栽方法,研究了持续干旱及复水处理后,接种褐环乳牛肝菌7、牛肝菌1、鸡油菌、彩色豆马勃和土生空团菌的马尾松苗木生理变化,并对菌根化苗木进行抗旱性评价.结果表明:在持续干旱条件下,马尾松苗木的丙二醛和相对质膜透性随之增加,但菌根化苗木的丙二醛和相对质膜透性均显著低于未接种苗木(对照);复水后,菌根化苗木中丙二醛和质膜透性较对照迅速降低.在持续干旱胁迫前21 d,马尾松苗木超氧阴离子自由基产生速率增加,同时也诱导了菌根化苗木中过氧化物歧化酶、过氧化物酶和硝酸还原酶活性显著增加.随着胁迫时间的延长,苗木复水后的恢复能力各异.在胁迫14 d复水后,苗木过氧化物歧化酶、过氧化物酶和硝酸还原酶的活性均得以恢复.菌根化苗木抗旱性的强弱为牛肝菌7>牛肝菌1>鸡油菌>土生空团菌>彩色豆马勃.过氧化物歧化酶和丙二醛与马尾松菌根化苗木抗旱性关联度较大,可以作为抗旱鉴定的主要指标.  相似文献   

14.
The springtail Folsomia candida has a highly permeable cuticle, but is able to survive several weeks at 98.2%RH. This corresponds to a water potential deficit of about 17bars between the environment and the normal osmotic pressure of the body fluids of this animal. Recent studies have shown a water vapour absorption mechanism by accumulation of sugars and polyols (SP) in F. candida, which explains how this species can survive dehydrating conditions. In the present study, adult F. candida were pre-acclimated at 98.2%RH to induce the accumulation of SP, and were subsequently exposed for additional desiccating conditions from 98 to 94%RH. Activity level, water content, osmotic pressure of body fluids and SP composition were investigated. After the desiccation period, the animals were rehydrated at 100%RH and survival was assessed. The results showed that F. candida survived a more severe drought stress when it had been pre-acclimated to 98.2%RH before exposure to lower humidity. This species was able to maintain hyperosmosity to the surroundings at 95.5%RH, suggesting that it can absorb water vapour down to this limit. Below this limit, trehalose levels increased while myo-inositol levels decreased. We propose that this is a change of survival strategy where F. candida at mild desiccation levels seek to retain water by colligative means (remain hyperosmotic), but at severe desiccation levels switches to an anhydrobiotic strategy.  相似文献   

15.
Signalling drought in guard cells   总被引:15,自引:1,他引:14  
A number of environmental conditions including drought, low humidity, cold and salinity subject plants to osmotic stress. A rapid plant response to such stress conditions is stomatal closure to reduce water loss from plants. From an external stress signal to stomatal closure, many molecular components constitute a signal transduction network that couples the stimulus to the response. Numerous studies have been directed to resolving the framework and molecular details of stress signalling pathways in plants. In guard cells, studies focus on the regulation of ion channels by abscisic acid (ABA), a chemical messenger for osmotic stress. Calcium, protein kinases and phosphatases, and membrane trafficking components have been shown to play a role in ABA signalling process in guard cells. Studies also implicate ABA-independent regulation of ion channels by osmotic stress. In particular, a direct osmosensing pathway for ion channel regulation in guard cells has been identified. These pathways form a complex signalling web that monitors water status in the environment and initiates responses in stomatal movements.  相似文献   

16.
17.
干旱监测指数研究   总被引:26,自引:0,他引:26  
日益严重的全球化干旱问题已经成为各国科学家和政府部门共同关注的热点,它直接威胁着人类的生存环境.而干旱监测,尤其是遥感干旱监测,一直是科学界公认的难题.本文对传统的干旱监测指数如帕尔默干旱指数、作物湿度指数、标准降水指数、地表水分供应指数的优缺点进行评述;将遥感干旱监测指数分成2类,一类是基于地表反射率和发射率的干旱监测指数;另一类是基于地表水和能量平衡模型的干旱监测指数,详细介绍了这2类干旱遥感监测指数的原理、方法以及适用范围.对各种干旱监测指数存在的问题以及干旱监测的发展趋势进行了探讨.  相似文献   

18.
Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D.  相似文献   

19.
Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance to subsequent perturbation? Here we reduced the quantity of precipitation throughfall to tropical forest soils in the Luquillo Mountains, Puerto Rico. Treatments included newly established throughfall exclusion plots (de novo excluded), plots undergoing reduction for a second time (pre-excluded) and ambient control plots. Ten months of throughfall exclusion led to a small but statistically significant decline in soil water potential and bacterial populations clearly adapted to increased osmotic stress. Although the water potential decline was small and microbial biomass did not change, phylogenetic diversity in the de novo-excluded plots decreased by ∼40% compared with the control plots, yet pre-excluded plots showed no significant change. On the other hand, the relative abundances of bacterial taxa in both the de novo-excluded and pre-excluded plots changed significantly with throughfall exclusion compared with control plots. Changes in bacterial community structure could be explained by changes in soil pore water chemistry and suggested changes in soil redox. Soluble iron declined in treatment plots and was correlated with decreased soluble phosphorus concentrations, which may have significant implications for microbial productivity in these P-limited systems.  相似文献   

20.
张喆  丁建丽  鄢雪英  李鑫  王刚 《生态学杂志》2013,32(8):2172-2178
针对目前中亚地区广泛存在的农业干旱问题,选取土库曼斯坦典型绿洲为研究区,利用2幅MODIS影像和同期过境的Landsat影像,获取归一化植被指数(NDVI)和地表温度(Ts),构建NDVI-Ts特征空间,计算得到2001和2011年2种温度植被干旱指数TVDITM和TVDIMODIS.利用较高分辨率的Landsat TM数据对MODIS数据反演结果进行验证.结果表明:2001年、2011年TVDITM和TVDIMODIS的绝对误差分别为0.0178和0.0228;均方根误差分别为0.0226和0.0279;相关系数分别为0.949和0.922,说明TVDI可有效反映区域土壤干旱情况.研究区内干旱区域占总面积的60%以上,旱情由绿洲中心向外围逐步严重.近10年来,研究区内土壤湿度低值区呈现扩大趋势,湿润和正常所占比例下降了5.32%,干旱和重旱的比例上升了14%,旱情情况总体加剧.因此,利用MODIS影像的温度植被旱情指数可有效地监测中亚地区干旱情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号