共查询到20条相似文献,搜索用时 15 毫秒
1.
The biology of hair follicle 总被引:1,自引:0,他引:1
Bernard BA 《Journal de la Société de Biologie》2005,199(4):343-348
The human hair follicle is a unique appendage which results from epithelio-mesenchymal interactions initiated around the 3rd month of development. This appendage has a very complex structure, with more than 20 different cell types distributed into 6 main compartments, namely the connective tissue sheath, the dermal papilla, the outer root sheath, the inner root sheath, the shaft and the sebaceous gland. The pigmentation unit, responsible for hair color, is made of fully active melanocytes located on top of the dermal papilla. This complex appendage has a unique behavior in mammals since, after a hair production phase, it involutes in situ before entering a resting phase after which it renews in a cyclical but stochastic fashion, out of a double reservoir of pluripotent stem cells also to able regenerate epidermis. The pigmentation unit also renews in a cyclical fashion, out of a melanocyte progenitor reservoir which progressively declines with time, provoking the hair whitening process. Finally, the shape of the hair shaft is programmed from the bulb. The hair follicle thus behaves as a fully autonomous skin appendage with its own hormonal control, its own autocrine and paracrine network, its own cycle, appearing as an incredibly complex and stable structure which summarizes the main rules of tissue homeostasis. 相似文献
2.
Investigations of the signalling between epithelial and mesenchymal compartments of skin during hair follicle initiation in utero and hair cycling have revealed the importance of the TGFβ superfamily in ectodermal organogenesis and morphogenesis. In particular the activins, their receptors and binding proteins such as follistatin, have been shown to be important regulators of cell proliferation, differentiation and apoptosis in hair follicle initiation, hair cycling, normal skin homeostasis and wound healing. Transgenic mice lacking various components of the activin signalling pathways display varying ectodermal pathologies including altered pelage hair follicle initiation. This review summarises the activin signal transduction pathways and the interactions between activins and other TGFβ signalling systems during hair follicle formation, hair growth cycling, skin function and wound healing. 相似文献
3.
Tobin DJ 《Pigment cell & melanoma research》2011,24(1):75-88
Although we have made significant progress in understanding the regulation of the UVR‐exposed epidermal‐melanin unit, we know relatively little about how human hair follicle pigmentation is regulated. Progress has been hampered by gaps in our knowledge of the hair growth cycle’s controls, to which hair pigmentation appears tightly coupled. However, pigment cell researchers may have overly focused on the follicular melanocytes of the nocturnal and UVR‐shy mouse as a proxy for human epidermal melanocytes. Here, I emphasize the epidermis‐follicular melanocyte pluralism of human skin, as research models for vitiligo, alopecia areata and melanoma, personal care/cosmetics innovation. Further motivation could be in finding answers to why hair follicle and epidermal pigmentary units remain broadly distinct? Why melanomas tend to originate from epidermal rather than follicular melanocytes? Why multiple follicular melanocyte sub‐populations exist? Why follicular melanocytes are more sensitive to aging influences? In this perspective, I attempt to raise the status of the human hair follicle melanocyte and highlight some species‐specific issues involved which the general reader of the pigmentation literature (with its substantial mouse‐based data) may not fully appreciate. 相似文献
4.
Prost-Squarcioni C 《Médecine sciences : M/S》2006,22(2):131-137
The skin consists of an outer epidermis, the dermis, and the hypodermis. It includes nerves, blood vessels, glands and hair follicles. Epidermis is a continually renewing, stratified squamous epithelium. It is populated by keratinocytes (80 %) and dendritic cells (20 %) : melanocytes, Langerhans and Merkel cells. In standard histology, keratinocytes are arranged in layers that represent different stages of their differentiation while melanocytes and Langerhans cells appear as clear cells respectively between the basal and the supra-basal cells of epidermis. The Merkel cells cannot be clearly identified. Dendritic processes of the dendritic cells can only be recognized by immunocytochemistry. At the dermal-epidermal junction, a PAS reactive basement membrane follows the contour of the basal cells. Dermis consists of collagenous and elastic fibers embedded into an amorphous ground substance. Fibroblasts, macrophages, mast cells and lymphocytes are its resident cells. Hypodermis is composed of adipocyte lobules defined by fibrous connective tissue septa. Hair follicle consists of 3 parts : the lower portion, from the base of the follicle including hair bulb to the insertion of the arrector pili muscle or buldge ; the isthmus, from the insertion of the arrector pili to the entrance of the sebaceous duct, and the infundibulum, from the entrance of the sebaceous duct to the follicular orifice. The lower portion is composed of the dermal hair papilla, the hair matrix, the hair, and the inner and the outer root sheaths. The hair matrix cells within hair bulb give rise to the hair and to the inner root sheath. With the electron microscope, one can obtain a more detailed view of the characteristic skin structures. Much of them can now be explained in terms of function and in many instances, in correlation with its biochemical composition. An attempt has been made in this paper to precisely give the location of molecules that are relevant in basic skin functions and understanding of auto-immune and genetic diseases. 相似文献
5.
6.
MicroRNA是参与转录后水平表达调控的重要因子, 在病理上成为药物作用的潜在靶点, 在生理上成为表型调控的潜在位点。目前, 对于microRNA的功能已有一定了解, 但其在皮肤毛囊发育中的作用机制还不完全清楚。近年来, 高通量测序技术为microRNA的鉴定提供了更准确、快速的途径, 研究发现一些microRNA能够影响皮肤毛囊细胞的分化和增殖, 其相关靶基因在调控毛囊周期性生长的过程中充当重要角色。文章综述了近年来microRNA在皮肤毛囊生长发育调控机制研究领域所取得的成果, 以期为后续开展绒山羊毛囊生长相关microRNA作用机制研究提供借鉴。 相似文献
7.
Demay MB MacDonald PN Skorija K Dowd DR Cianferotti L Cox M 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):344-346
The vitamin D receptor (VDR) is expressed in numerous cells and tissues, including the skin. The critical requirement for cutaneous expression of the VDR has been proven by investigations in mice and humans lacking functional receptors. These studies demonstrate that absence of the VDR leads to the development of alopecia. The hair follicle is formed by reciprocal interactions between an epidermal placode, which gives rise to the hair follicle keratinocytes and the underlying mesoderm which gives rise to the dermal papilla. Hair follicle morphogenesis ends the second week of life in mice. Studies in VDR null mice have failed to demonstrate a cutaneous abnormality during this period of hair follicle morphogenesis. However, VDR null mice are unable to initiate a new hair cycle after the period of morphogenesis is complete, therefore, do not grow new hair. Investigations in transgenic mice have demonstrated that restricted expression of the VDR to keratinocytes is capable of preventing alopecia in the VDR null mice, thus demonstrating that the epidermal component of the hair follicle requires VDR expression to maintain normal hair follicle homeostasis. Studies were then performed to determine which regions of the VDR were required for these actions. Investigations in mice lacking the first zinc finger of the VDR have demonstrated that they express a truncated receptor containing an intact ligand binding and AF2 domain. These mice are a phenocopy of mice lacking the VDR, thus demonstrate the critical requirement of the DNA binding domain for hair follicle homeostasis. Transgenic mice expressing VDRs with mutations in either the ligand-binding domain or the AF2 domain were generated. These investigations demonstrated that mutant VDRs incapable of ligand-dependent transactivation were able to prevent alopecia. Investigations are currently underway to define the mechanism by which the unliganded VDR maintains hair follicle homeostasis. 相似文献
8.
近年来,转录组测序技术在动物重要经济性状受复杂基因网络的调控研究领域取得了显著的成果。作为哺乳动物皮肤的衍生物,毛囊是唯一具有高度自我更新能力、独特的可再生器官,毛囊细胞经增殖分化最终形成毛发。已有的研究表明,诸多生长因子及其受体作为体内分泌协调基因的重要因素,对毛发的生长发育起着重要的调控作用。文章综述了近年来转录组测序技术在人、小鼠及羊等生物的皮肤毛囊发育和再生过程中基因调控方式的研究进展,旨在为今后人工干扰绒毛周期生长发育和分子育种提供理论依据,同时也为皮肤毛囊相关疾病的临床治疗提供新思路。 相似文献
9.
miRNA在调控皮肤和毛囊发育中的作用 总被引:3,自引:0,他引:3
表皮发生和毛囊的周期性再生涉及一系列基因的激活和沉默。近年来的研究表明, miRNA的表达谱在表皮和毛囊组织中存在组织特异性, 在毛囊周期性发育中存在阶段特异性。大量miRNA参与表皮和毛囊的发生, 色素的沉着以及毛囊的周期性发育过程, 不同类型细胞中的miRNA通过与信号通路和调控因子相互作用形成了一个全方位、多层次的网络调控系统。文章综述了miRNA调控表皮内稳态和毛囊周期性发育的一些研究 进展, 旨在丰富miRNA参与的基因调控网路的研究, 进而为人工调控miRNA进行疾病治疗和分子育种提供 帮助。 相似文献
10.
Galbraith H 《Animal : an international journal of animal bioscience》2010,4(9):1490-1509
11.
Summary Epidermal and hair follicle transglutaminases crosslink structural proteins in the skin by epsilon-(gamma-glutamyl)-lysine bonds. This crosslinking produces protein polymers that are extremely insoluble and, until recently, difficult to characterize.Epidermal transglutaminase is localized to the granular layer of the epidermis. It catalyzes the crosslinking of a soluble cytoplasmic precursor to form the cornified envelope that lines the inner membrane of the mature keratinocyte in the stratum corneum.Hair follicle transglutaminase is localized to the inner root sheath and medulla of the hair follicle. It crosslinks a poorly characterized citrulline-rich protein.The enzymes and their substrates have been shown to be important markers of normal differentiation. Regulation of these processes is currently under investigation. 相似文献
12.
Bone morphogenetic proteins (BMPs), their antagonists, and BMP receptors are involved in controlling a large number of biological functions including cell proliferation, differentiation, cell fate decision, and apoptosis in many different types of cells and tissues during embryonic development and postnatal life. BMPs exert their biological effects via using BMP-Smad and BMP-MAPK intracellular pathways. The magnitude and specificity of BMP signaling are regulated by a large number of modulators operating on several levels (extracellular, cytoplasmic, nuclear). In developing and postnatal skin, BMPs, their receptors, and BMP antagonists show stringent spatio-temporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. Genetic studies assert an essential role for BMP signaling in the control of cell differentiation and apoptosis in developing epidermis, as well as in the regulation of key steps of hair follicle development (initiation, cell fate decision, cell lineage differentiation). In postnatal hair follicles, BMP signaling plays an important role in controlling the initiation of the growth phase and is also involved in the regulation of apoptosis-driven hair follicle involution. However, additional efforts are required to fully understand the mechanisms and targets involved in the realization of BMP effects on distinct cell population in the skin and hair follicle. Progress in this area of research will hopefully lead to the development of new therapeutic approaches for using BMPs and BMP antagonists in the treatment of skin and hair growth disorders. 相似文献
13.
beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin 总被引:61,自引:0,他引:61
beta-Catenin is an essential molecule in Wnt/wingless signaling, which controls decisive steps in embryogenesis. To study the role of beta-catenin in skin development, we introduced a conditional mutation of the gene in the epidermis and hair follicles using Cre/loxP technology. When beta-catenin is mutated during embryogenesis, formation of placodes that generate hair follicles is blocked. We show that beta-catenin is required genetically downstream of tabby/downless and upstream of bmp and shh in placode formation. If beta-catenin is deleted after hair follicles have formed, hair is completely lost after the first hair cycle. Further analysis demonstrates that beta-catenin is essential for fate decisions of skin stem cells: in the absence of beta-catenin, stem cells fail to differentiate into follicular keratinocytes, but instead adopt an epidermal fate. 相似文献
14.
The infundibulum is the funnel-shaped, uppermost epithelial segment of the hair follicle. Thus, as the infundibulum represents a major interface zone of mammalian skin epithelium with the environment and harbors a rich residential microflora, it is not surprising that this area is endowed with a specialized immune system and innate immune defenses. Clinically, the infundibulum is quite important, as it becomes prominently involved in many skin diseases such as acne, infundibular folliculitis and cysts, hidradenitis suppurativa, keratosis pilaris, Fox-Fordyce disease, and a subtype of basal cell carcinoma. Nevertheless, the biology of the infundibulum is only poorly understood, and it remains largely unknown how exactly the infundibulum contributes to skin disease, and how it might be targeted effectively for treating important skin diseases. Several recent studies in mouse models have identified new potential infundibular markers, shed light upon infundibular development and homeostasis, identified infundibular epithelial stem cells, and have implicated the infundibulum in the pathogenesis of additional skin disorders. These recent insights encourage one to systematically re-visit the biology and pathology of the infundibulum, one of the most important, yet least-studied frontiers in mammalian epithelial physiology. 相似文献
15.
16.
María Eugenia Bala?á Hernán Eduardo Charreau Gustavo José Leirós 《World journal of stem cells》2015,7(4):711-727
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients’ psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field. 相似文献
17.
18.
19.
20.
Annick Lesne 《Biological reviews of the Cambridge Philosophical Society》2008,83(4):509-532
The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self‐organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems. 相似文献