首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The physiologic function of an ion pump is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na,K-ATPase and the gastric H,K-ATPase are two closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intra-molecular interactions govern these proteins' trafficking, distribution and catalytic capacity.  相似文献   

2.
Platelets, developed from megakaryocytes, are characterized by anucleate and short-life span hemocyte in mammal vessel. Platelets are very important in the cardiovascular system. Studies indicate the occurrence of autophagy platelets and megakaryocytes. Moreover, abnormal autophagy decreases the number of platelets and suppresses platelet aggregation. In addition, mitophagy, as a kind of selective autophagy, could inhibit platelet aggregation under oxidative stress or hypoxic, whereas promote platelet aggregation after reperfusion. Finally, autophagy regulates hemorrhagic and thrombosis diseases by influencing the number and function of platelets. In this paper, the role of autophagy in platelets and megakaryocytes, as well as coupled with the promotive or inhibitory role of hemorrhagic and thrombosis diseases are elucidated. Therefore, autophagy may be a potentially therapeutic target in modulating the platelet-related diseases.  相似文献   

3.
Molecular biology and regulation of methane monooxygenase   总被引:19,自引:0,他引:19  
Methanotrophs are ubiquitous in the environment and play an important role in mitigating global warming due to methane. They are also potentially interesting for industrial applications such as production of bulk chemicals or bioremediation. The first step in the oxidation of methane is the conversion to methanol by methane monooxygenase, the key enzyme, which exists in two forms: the cytoplasmic, soluble methane monooxygenase (sMMO) and the membrane-bound, particulate methane monooxygenase (pMMO). This paper reviews the biochemistry and molecular biology of both forms of MMO. In the past few years there have been many exciting new findings. sMMO components have been expressed in heterologous and homologous hosts. The pMMO has been purified and biochemically studied in some detail and the genes encoding the pMMO have been sequenced. Copper ions have been shown to play a key role in regulating the expression of both MMO enzyme complexes. We also present a model for copper regulation based on results from Northern analysis, primer-extensions and new sequence data, and raise a number of unanswered questions for future studies.  相似文献   

4.
During axon degeneration, NAD+ levels are largely controlled by two enzymes: nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and toll interleukin motif containing protein 1 (SARM1). NMNAT2, which catalyzes the formation of NAD+ from NMN and ATP, is actively degraded leading to decreased NAD+ levels. SARM1 activity further decreases the concentration of NAD+ by catalyzing its hydrolysis to form nicotinamide and a mixture of ADPR and cADPR. Notably, SARM1 knockout mice show decreased neurodegeneration in animal models of axon degeneration, highlighting the therapeutic potential of targeting this novel NAD+ hydrolase. This review discusses recent advances in the SARM1 field, including SARM1 structure, regulation, and catalysis as well as the identification of the first SARM1 inhibitors.  相似文献   

5.
6.
7.
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

8.
The mechanisms of signal transduction and vesicular transport have traditionally been studied in isolation, but recent studies make it clear that the two processes are inextricably linked. A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between these processes.  相似文献   

9.
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to haemodynamic forces, including blood flow‐induced fluid shear stress and cyclic stretch from blood pressure. These forces modulate vascular cell gene expression and function and, therefore, influence vascular physiology and pathophysiology in health and disease. Epigenetics, including DNA methylation, histone modification/chromatin remodelling and RNA‐based machinery, refers to the study of heritable changes in gene expression that occur without changes in the DNA sequence. The role of haemodynamic force‐induced epigenetic modifications in the regulation of vascular gene expression and function has recently been elucidated. This review provides an introduction to the epigenetic concepts that relate to vascular physiology and pathophysiology. Through the studies of gene expression, cell proliferation, angiogenesis, migration and pathophysiological states, we present a conceptual framework for understanding how mechanical force‐induced epigenetic modifications work to control vascular gene expression and function and, hence, the development of vascular disorders. This research contributes to our knowledge of how the mechanical environment impacts the chromatin state of ECs and VSMCs and the consequent cellular behaviours.  相似文献   

10.
The cytoskeleton and the cytoplasmic membrane of normal somatic cells are modified during proliferation. The loss of the division potential during serial proliferation is due in part to these structural modifications that induce a decline in the cell conformational flexibility. During viral transformation, the changes in the cytoskeleton and in the affinity of the cell to its matrix and to neighboring cells increase the cell migratory capability, maintaining the conformation flexibility needed for the initiation of the division cycle. We could modulate cell proliferation, transformed phenotype, and differentiation by changing the electric charge of a substratum. Results support the view that the biology of conformation is crucial for the expression of these cell properties.  相似文献   

11.
This is the first comprehensive review of ribosomes in the cellular slime mold Dictyostelium discoideum. The physicochemical, biochemical, cellular, molecular, and developmental properties are reviewed. Several features demonstrate that a unique class of ribosomes exists in this organism, and a study of these ribosomes will be important to decipher special features of translational regulation, and evolution of the organelle in the eukaryotic kingdom.  相似文献   

12.
Filamentous fungi produce a diverse array of secondary metabolites--small molecules that are not necessary for normal growth or development. Secondary metabolites have a tremendous impact on society; some are exploited for their antibiotic and pharmaceutical activities, others are involved in disease interactions with plants or animals. The availability of fungal genome sequences has led to an enhanced effort at identifying biosynthetic genes for these molecules. Genes that regulate production of secondary metabolites have been identified and a link between secondary metabolism, light and sexual/asexual reproduction established. However, the role of secondary metabolites in the fungi that produce them remains a mystery. Many of these fungi live saprophytically in the soil and such molecules may provide protection against other inhabitants in this ecological niche.  相似文献   

13.
14.
The roles of intracellular calcium in the regulation of cell metabolism and cell membrane permeability are highlighted with examples taken from recent studies.  相似文献   

15.
A report on the meeting 'Systems Biology: Global Regulation of Gene Expression' at Cold Spring Harbor, New York, USA, 23-26 March 2006.  相似文献   

16.
植物基因在转录水平上的调控及其生物学意义   总被引:3,自引:1,他引:3  
张椿雨  龙艳  冯吉  孟金陵 《遗传》2007,29(7):793-799
植物发生变异或分化的本质是基因表达模式发生变化的结果, 而基因表达多是在转录水平进行调控的。文章通过分析总结前人在这一领域内的大量研究成果, 系统地从遗传学(genetics)和表观遗传学(epigenetics)两个角度对植物基因在转录水平上的调控方式及其生物学意义进行了总结性阐述, 分析了这一研究领域目前所面临的挑战, 展望了该领域今后的发展及应用前景。  相似文献   

17.
The phytohormone abscisic acid (ABA) is involved in seed dormancy and the response to various environmental stresses. Our understanding of the ABA biosynthetic pathway has been increased recently through the use of plant mutants and the cloning of many of the genes encoding for the enzymes involved. C40 Xanthophylls are precursors of ABA and are now known to be derived from isopentenyl phosphate (IPP) synthesized in plastids via a mevalonate-independent pathway. Enzyme reactions downstream of zeaxanthin have recently been reported to be important for the precise regulation of ABA levels. Zeaxanthin epoxidase (ZEP) catalyses the conversion of zeaxanthin to violaxanthin. Changes in ZEP gene expression appear to regulate ABA biosynthesis in seeds and roots, but not in leaves which might be expected considering the important role of epoxy-carotenoids in photosynthesis and photoprotection. The isomerization of the resulting all-trans-violaxanthin to 9-cis-epoxy-carotenoids awaits elucidation. Although 9-cis-epoxy-carotenoid dioxygenase (NCED), which subsequently cleaves the resulting carotenoids could use the 9-cis isomers of both violaxanthin and neoxanthin as substrates in vitro, the in vivo substrates remain to be determined. NCEDs are apparently encoded by multigene families and identification of the various members is required to determine their relative contribution to the regulation of ABA levels. Studies on those already available indicate that their up-regulation upon water stress is compatible with a key role in the modulation of ABA levels. The genes encoding for the enzymes that convert the cleavage product xanthoxin to ABA are not yet known, although recently cloned aldehyde oxidases may act on ABA-aldehyde.  相似文献   

18.
19.
20.
Early in the 20th century, Charles Manning Child attributed organismal gradients in metabolism to interactions among groups of cells. Metabolic gradients are now firmly grounded in redox chemistry, yet modern work on metabolic signaling has consistently focused on the cellular level. Multicellular redox regulation, however, may occur when redox state is determined by the behavior of a group of cells. For instance, typically an abundance of substrate will shift the redox state of mitochondria in the direction of reduction, leading to increased reactive oxygen species (ROS). These ROS, in turn, may modify the conformation and activity of proteins involved in signaling pathways, resulting in phenotypic changes. In contrast, if substrate triggers the contractions of a muscular structure comprising mitochondrion-rich cells, the resulting metabolic demand may shift the redox state in the direction of oxidation, with a corresponding decrease of ROS and different phenotypic effects. Indeed, colonial hydroids exemplify this process. Parallel examples may occur whenever mitochondria are concentrated in cells of structures that can respond to environmental perturbations with increased metabolic demand. In these circumstances, predicting the direction of metabolic signaling may require an understanding of events at the organismal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号