首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Differential or genetic sequencing requires searching sample DNA for variations with respect to a reference sequence. Conventional detection techniques are too labor and cost expensive for use in diagnostic applications, therefore new technologies will be required. Measurement techniques based on mass spectrometry (MS) possess the potential for high-throughput, high fidelity measurement of sequence variation. Unambiguous detection of polymorphic sequences has been demonstrated, even in heterozygous samples. Automated reproducible measurements of microscopic arrays of samples will enable the high-throughput detection required for large-scale applications. Computational simulation and analysis of experimental parameters prior to experimentation will provide the optimization necessary for development of robust, reproducible measurements.  相似文献   

2.
A survey of plasma proteins in approximately 1,300 individuals by MALDI-TOF MS resulted in identification of a structural polymorphism of apolipoprotein C1 (ApoC1) that was found only in persons of American Indian or Mexican ancestry. MS/MS analysis revealed that the alteration consisted of a T45S variation. The methyl group of T45 forms part of the lipid-interacting surface of ApoC1. In agreement with an impact on lipid contact, the S45 variant was more susceptible to N-terminal truncation by dipeptidylpeptidase IV in vitro than was the T45 variant. The S45 protein also displayed greater N-terminal truncation (loss of Thr-Pro) in vivo than the T45 variant. The S45 variant also showed preferential distribution to the very-low-density lipoprotein fraction than the T45 protein. These properties indicate a functional effect of the S45 variant and support a role for residue 45 in lipid contact and lipid specificity. Further studies are needed to determine the effects of the variant and its altered N-terminal truncation on the metabolic functions of ApoC1.  相似文献   

3.
We have developed an approach that allows peptide mass mapping by matrix-assisted laser desorption ionization-mass spectrometry of proteins visualized on a nitrocellulose membrane by immunochemical detection. Proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted onto a nitrocellulose membrane and after blocking with a nonprotein-containing polymer such as polyvinylpyrrolidone 40 (PVP-40) or Tween 20, the proteins are stained with fount India ink. After incubation with primary and, if required, secondary peroxidase-coupled antibodies, immunochemically reactive proteins can be visualized using conventional enhanced chemiluminescence detection and assigned to the India ink-stained membrane by simple superposition. The proteins of interest are excised, submitted to "on-membrane" cleavage and the peptides are analyzed by mass spectrometry. Protein-based blocking reagents normally used in standard immunodetection protocols, such as skimmed milk, can be employed. We have obtained high-quality mass spectra of bovine serum albumin (BSA) detected on an immunoblot with an estimated amount of 100 fmol applied onto the gel, indicating the sensitivity of the present method. In addition, the approach is demonstrated with two other commercially available proteins, a serum protein, the successful identification of a tyrosine phosphorylated protein from total rat liver homogenate and serine phosphorylated proteins from an EcR 293 nuclear extract separated by two-dimensional (2-D) SDS-PAGE.  相似文献   

4.
With the human genome in a first sequence draft and several other genomes being finished this year, the existing information gap between genomics and proteomics is becoming increasingly evident. The analysis of the proteome is, however, much more complicated because the synthesis and structural requirements of functional proteins are different from the easily handled oligonucleotides, for which a first analytical breakthrough already has come in the use of DNA chips. In comparison with the DNA microarrays, the protein arrays, or protein chips, offer the distinct possibility of developing a rapid global analysis of the entire proteome. Thus, the concept of comparing proteomic maps of healthy and diseased cells may allow us to understand cell signaling and metabolic pathways and will form a novel base for pharmaceutical companies to develop future therapeutics much more rapidly. This report demonstrates the possibilities of designing protein chips based on specially constructed, small recombinant antibody fragments using nano-structure surfaces with biocompatible characteristics, resulting in sensitive detection in the 600-amol range. The assay readout allows the determination of single or multiple antigen-antibody interactions. Mass identity of the antigens, currently with a resolution of 8000, enables the detection of structural modifications of single proteins.  相似文献   

5.
The main focus of the serum amyloid A (SAA) family has been on the acute phase isoforms. However, the constitutive isoform (SAA4) may have a strong effect on the metabolism of human serum lipoproteins. In this study, the SAA4 protein was examined in the high-density lipoprotein fraction of both healthy and diseased individuals. Novel isoforms of SAA4 were detected using ultracentrifugation combined with solid-phase extraction and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Three truncated isoforms were identified as well as two glycosylated isoforms. Patterns of isoform distribution may be significant for assessment of cardiovascular risk as well as direction of patient treatment.  相似文献   

6.
The complexation of calcium and zinc cations by pyrroglutamate analogs has been studied in the gas phase by means of electrospray ionization mass spectrometry (ESI–MS). Complexes were obtained from the solutions of calcium perchlorate and zinc perchlorate in acetonitrile. The complexes with calcium are singly and doubly charged with various stoichiometries while zinc complexes are singly charged except for one ligand. Solvation with acetonitrile and presence of perchlorate counter-ions are observed when the complexes are in the gas phase. The complexes formed with both metals are mainly L2M and LM species. All tested compounds are better complexing agents for calcium than for zinc.  相似文献   

7.
Poly(ADP-ribose) polymerases are a family of enzymes that catalyze the conversion of NAD+ into ADP-ribose. Among them, Tankyrases have been found to bind to centrosome, mitotic spindle and microsome proteins, in the cytoplasm, and to telomeres in the nucleus, where they play a relevant role in telomere metabolism. However, their precise intracellular localization during interphase has not been so far fully elucidated. We investigated this aspect in situ by double immunofluorescence experiments using antibodies recognizing Tankyrases 1-2 or other proteins residing in specific organelles (Golgi apparatus, mitochondria, lysosomes, endoplasmic reticulum). We used HeLa cells as a model system in vitro, before and after treatment with either actinomycin D or etoposide, to also investigate the possible relocation of Tankyrases during apoptosis. We observed that Tankyrases are distributed both in the nucleus and in the cytoplasm; in this latter compartment, they were found to colocate with the Golgi apparatus but never with the mitochondria; a pool of Tankyrases also colocates with the endoplasmic reticulum and lysosomes. Interestingly, in cells with clear signs of apoptosis, Tankyrases were detectable in the cytoplasmic blebs: this suggests that they are not massively cleaved during apoptosis and persist in the largely heterogeneous apoptotic remnants which are known to contain components of cytoplasmic and nuclear origin.  相似文献   

8.
9.
The active site of [NiFe] hydrogenase is a binuclear metal complex composed of Fe and Ni atoms and is called the Ni–Fe site, where the Fe atom is known to be coordinated to three diatomic ligands. Two mass spectrometric techniques, pyrolysis-MS (pyrolysis-mass spectrometry) and TOF-SIMS (time-of-flight secondary ion mass spectrometry), were applied to several proteins, including native and denatured forms of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F, [Fe4S4]2-ferredoxin from Clostridium pasteurianum, [Fe2S2]-ferredoxin from Spirulina platensis, and porcine pepsin. Pyrolysis-MS revealed that only native hydrogenase liberated SO/SO2 (ions of m/z 48 and 64 at an equilibrium ratio of SO and SO2) at relatively low temperatures before the covalent bonds in the polypeptide moiety started to decompose. TOF-SIMS indicated that native Miyazaki hydrogenase released SO/SO2 (m/z 47.97 and 63.96) as secondary ions when irradiated with a high-energy Ga+ beam. Denatured hydrogenase, clostridial ferredoxin, and pepsin did not release SO as a secondary ion. The FT-IR spectrum of the enzyme suggested the presence of CO and CN. These lines of evidence suggest that the three diatomic ligands coordinated to the Fe atom at the Ni–Fe site in Miyazaki hydrogenase are SO, CO, and CN. The role of the SO ligand in helping to cleave H2 molecules at the active site and stabilizing the Fe atom in the diamagnetic Fe(II) state in the redox cycle of this enzyme is discussed.  相似文献   

10.
Brain region-specific expression of proteolytic enzymes can control the biological activity of endogenous neuropeptides and has recently been targeted for the development of novel drugs, for neuropathic pain, cancer, and Parkinson’s disease. Rapid and sensitive analytical methods to profile modulators of enzymatic activity are important for finding effective inhibitors with high therapeutic value.Combination of in situ enzyme histochemistry with MALDI imaging mass spectrometry allowed developing a highly sensitive method for analysis of brain-area specific neuropeptide conversion of synthetic and endogenous neuropeptides, and for selection of peptidase inhibitors that differentially target conversion enzymes at specific anatomical sites. Conversion and degradation products of Dynorphin B as model neuropeptide and effects of peptidase inhibitors applied to native brain tissue sections were analyzed at different brain locations. Synthetic dynorphin B (2 pmol) was found to be converted to the N-terminal fragments on brain sections whereas fewer C-terminal fragments were detected. N-ethylmaleimide (NEM), a non-selective inhibitor of cysteine peptidases, almost completely blocked the conversion of dynorphin B to dynorphin B(1–6; Leu-Enk-Arg), (1–9), (2–13), and (7–13). Proteinase inhibitor cocktail, and also incubation with acetic acid displayed similar results.Bioconversion of synthetic dynorphin B was region-specific producing dynorphin B(1–7) in the cortex and dynorphin B (2–13) in the striatum. Enzyme inhibitors showed region- and enzyme-specific inhibition of dynorphin bioconversion. Both phosphoramidon (inhibitor of the known dynorphin converting enzyme neprilysin) and opiorphin (inhibitor of neprilysin and aminopeptidase N) blocked cortical bioconversion to dynorphin B(1–7), wheras only opiorphin blocked striatal bioconversion to dynorphin B(2–13).This method may impact the development of novel therapies with aim to strengthen the effects of endogenous neuropeptides under pathological conditions such as chronic pain. Combining histochemistry and MALDI imaging MS is a powerful and sensitive tool for the study of inhibition of enzyme activity directly in native tissue sections.  相似文献   

11.
Currently, no method allows direct and quantitative comparison of MHC-presented peptides in pairs of samples, such as transfected and untransfected, tumorous and normal or infected and uninfected tissues or cell lines. Here we introduce two approaches that use isotopically labeled reagents to quantify by mass spectrometry the ratio of peptides from each source. The first method involves acetylation and is both fast and simple. However, higher peptide recoveries and a finer sensitivity are achieved by the second method, which combines guanidination and nicotinylation, because the charge state of peptides can be maintained. Using differential acetylation, we identified a beta catenin-derived peptide in solid colon carcinoma overpresented on human leucocyte antigen-A (HLA-A)(*)6801. Guanidination/nicotinylation was applied to keratin 18-transfected cells and resulted in the characterization of the peptide RLASYLDRV (HLA-A(*)0201), exclusively presented on the transfectant. Thus, we demonstrate methods that enable a pairwise quantitative comparison leading to the identification of overpresented MHC ligands.  相似文献   

12.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

13.
Interactions of membrane proteins are important in various aspects of cell function. However, weak membrane protein-protein interactions are difficult to study using techniques such as co-immunoprecipitations. CD4 is a cell surface protein involved in T cell activation and the binding of the human immunodeficiency virus to HIV target cells. Here we report the use of cross-linking followed by affinity purification of CD4 in combination with mass spectrometry for identification of proteins that are in the proximity of CD4. Besides the components of the CD4 receptor complex, CD4 and lck, we have identified by tandem mass spectrometry 17 tryptic peptides from transferrin receptor CD71, three peptides from protein phosphatase CD45, and one peptide from 4F2 lymphocyte activation antigen CD98. The efficiency of the cross-linking did not correlate with the level of cell surface expression of the detected molecules, excluding a possible bias of the cross-linking toward the most abundant cell surface molecules. Whereas the association of CD4 with CD45 has been reported, the associations with CD71 and CD98 have not been previously described. We used small-scale immunoprecipitation after cross-linking in combination with fluorescence resonance energy transfer (FRET) measurements to investigate the association between CD4 and CD71. Our data show that CD71 self-associates on the cell surface, that a small fraction of CD4 can be detected by copurifying it with CD71 after cross-linking, and that the level of association between CD4 and CD71 significantly increases after phorbol 12-myristate 13-acetate-induced endocytosis of CD4. This suggests that a small fraction of CD4 associates with clusters of CD71. As both molecules undergo endocytic recycling, the association and cross-linking result from their clustering in the same pit and/or vesicle. The CD4-CD98 association probably results from nonspecific cross-linking.  相似文献   

14.
This study describes the use of hybrid mass spectrometry for the mapping, identification, and semi-quantitation of triacylglycerol regioisomers in fats and oils. The identification was performed based on the accurate mass and fragmentation pattern obtained by data-dependent fragmentation. Quantitation was based on the high-resolution ion chromatograms, and relative proportion of sn-1(3)/sn-2 regioisomers was calculated based on generalized fragmentation models and the relative intensities observed in the product ion spectra. The key performance features of the developed method are inter-batch mass accuracy < 1 ppm (n = 10); lower limit of detection (triggering threshold) 0.1 μg/ml (equivalent to 0.2 weight % in oil); lower limit of quantitation 0.2 μg/ml (equivalent to 0.4 weight % in oil); peak area precision 6.5% at 2 μg/ml concentration and 15% at 0.2 μM concentration; inter-batch precision of fragment intensities < 1% (n = 10) independent of the investigated concentration; and averaged accuracy using the generic calibration 3.8% in the 1–10 μg/ml range and varies between 1–23% depending on analytes. Inter-esterified fat, beef tallow, pork lard, and butter fat samples were used to show how well regioisomeric distribution of palmitic acid can be captured by this method.  相似文献   

15.
The hydroxyl radicals are widely implicated in oxidation of carbohydrates during biological and industrial processes being responsible for their structural modifications and causing functional damage. The identification of intermediate oxidation products is hampered by a lack of reliable sensible methods for their detection. In this study, the oxidation of two models of galactomannans (Man3 and GalMan2) has been studied in reaction with hydroxyl radical generated by Fenton reaction. The oxidation patterns were assessed using preparative ligand-exchange/size-exclusion chromatography (LEX/SEC) coupled with tandem electrospray mass spectrometry (ESI-MS/MS). This allowed the identification of derived oligosaccharides (OS) containing hexuronic, hexonic, pentonic and erythronic acid residues and neutral OS bearing hydroperoxy, hydrated carbonyl moieties and residues from pyranosyl ring cleavage. The depolymerization products have been also detected upon oxidation of oligomers. This study allowed developing a simple, effective ‘fingerprinting’ protocol for detecting the damage done to mannans by oxidative radicals.  相似文献   

16.
The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 μm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 μm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.  相似文献   

17.
From a variety of analytical electron microscopy experiments, the chromosomes of dinoflagellates are known to contain sizeable amounts of cations, the latter thought to contribute to the neutralization of the negative charge carried by the phosphate groups in the DNA backbone. From previous Ca and Mg chelation experiments, it is also known that these cations are necessary for the compaction and preservation of the chromosome architecture. Similar conclusions have been recently presented by our group concerning mammalian mitotic chromosomes, in studies based on secondary ion mass spectrometry (SIMS) carried out with the University of Chicago high-resolution scanning ion microprobe (UC-SIM). We have now applied this instrument to image the distribution of DNA-bound Ca(2+) and Mg(2+) in dinoflagellate chromosomes, a goal that could not be attained earlier by analytical electron microscopy. Analyzed quantitatively and imaged here by SIMS for the first time, through their cation content, are the chromosomes of the dinoflagellates Prorocentrum micans, Gymnodinium mikimotoi and Gymnodinium dorsum. The cell nuclei were isolated and prepared for SIMS analysis with a minimal protocol (mechanical fractionation in culture medium followed by ethanol drying), which did not expose the samples to artifact-creating, alien chemical agents. By this approach, we have confirmed the earlier findings by several authors, and contributed new structural information provided by our ion probe capability to erode the sample surface layer by layer (SIMS tomography). Dinoflagellates, due to the absence of histones, represent an ideal model system where cations may bind directly with DNA, allowing comparisons to be made with recently reported X-ray crystallography results at atomic resolution. Such comparisons yielded quantitative confirmation that the Ca(2+)+Mg(2+) concentrations found for e.g. P. micans are consistent with those anticipated to provide complete charge neutralization of naked DNA by cations, also resulting in maximal DNA compaction.  相似文献   

18.
Functional genomics by mass spectrometry   总被引:10,自引:0,他引:10  
Andersen JS  Mann M 《FEBS letters》2000,480(1):25-31
Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene function, mass spectrometry is the method of choice. Mass spectrometry can now identify proteins with very high sensitivity and medium to high throughput. New instrumentation for the analysis of the proteome has been developed including a MALDI hybrid quadrupole time of flight instrument which combines advantages of the mass finger printing and peptide sequencing methods for protein identification. New approaches include the isotopic labeling of proteins to obtain accurate quantitative data by mass spectrometry, methods to analyze peptides derived from crude protein mixtures and approaches to analyze large numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes.  相似文献   

19.
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.  相似文献   

20.
The adaptation of cells to a changing environment is normally accompanied by rapid and/or chronic remodeling of membrane lipids. In order to understand the role played by membrane lipid metabolism in such responses, it is necessary to characterize in more detail the changes in membrane composition occurring in response to defined stimuli. There has been intense interest in characterizing the “stem cell niche” in recent years and an emerging consensus that stem cells are located in regions of low oxygen tension and probably well-isolated from the blood supply.We report here the use of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry to monitor changes in the composition and saturation degree of choline phospholipids of hematopoietic progenitor (FDCPmix) cells under standard nutrient-rich culture conditions and at low oxygen and low glucose concentrations. We found that the increase in proliferation rate driven by high concentrations of interleukin-3 (IL-3) is associated with a decrease in membrane phosphatidylcholine (PC) 18:0/20:4 and sphingomyelin (SM) together with an increase in PC 18:0/18:2 and dihydro SM. Furthermore, this effect is most pronounced under low oxygen and low glucose conditions, independent of cell proliferation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号