首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The x-ray structure of the Escherichia coli chloride/proton antiporter ClC-ec1 provides a structural paradigm for the widespread and diverse ClC family of chloride channels and transporters. To maximize the usefulness of this paradigm, it is important to directly relate structure to function via studies of ClC-ec1 itself; however, few functional studies of this protein have been performed. In an endeavor to develop new tools for functional analysis of ClC-ec1, we have discovered that this transporter is inhibited by the stilbenedisulfonate 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). In planar lipid bilayers, DIDS inhibits ClC-ec1 activity reversibly, with an apparent affinity in the micromolar range. Since ClC-ec1 is randomly oriented in the bilayers, ascertaining whether DIDS inhibits from the intracellular or extracellular side required an indirect approach. Using the ClC-ec1 structure as a guide, we designed a strategy in which modification of Y445C was monitored in conjunction with inhibition by DIDS. We found that DIDS inhibits transporters specifically from the intracellular side. Transporters with their extracellular side exposed to DIDS function normally, maintaining stoichiometric proton/chloride antiport over a wide range of proton and chloride concentrations. The side-dependent nature of DIDS inhibition will be useful for generating "functionally oriented" preparations of ClC-ec1, in which DIDS is used to silence transporters in one orientation but not the other.  相似文献   

2.
Ion-binding properties of the ClC chloride selectivity filter   总被引:1,自引:0,他引:1  
The ClC channels are members of a large protein family of chloride (Cl-) channels and secondary active Cl- transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl- ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl- channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction.  相似文献   

3.
The Cl(-)/H(+) exchange mediated by ClC transporters can be uncoupled by external SCN(-) and mutations of the proton glutamate, a conserved residue at the internal side of the protein. We show here for the mammalian ClC transporter ClC-5 that acidic internal pH led to a greater increase in currents upon exchanging extracellular Cl(-) for SCN(-). However, transport uncoupling, unitary current amplitudes, and the voltage dependence of the depolarization-induced activation were not altered by low pH values. Therefore, it is likely that an additional gating process regulates ClC-5 transport. Higher internal [H(+)] and the proton glutamate mutant E268H altered the ratio between ClC-5 transport and nonlinear capacitance, indicating that the gating charge movements in ClC-5 arise from incomplete transport cycles and that internal protons increase the transport probability of ClC-5. This was substantiated by site-directed sulfhydryl modification of the proton glutamate mutant E268C. The mutation exhibited small transport currents together with prominent gating charge movements. The charge restoration using a negatively charged sulfhydryl reagent reinstated also the WT phenotype. Neutralization of the charge of the gating glutamate 211 by the E211C mutation abolished the effect of internal protons, showing that the increased transport probability of ClC-5 results from protonation of this residue. S168P (a mutation that decreases the anion affinity of the central binding site) reduced also the internal pH dependence of ClC-5. These results support the idea that protonation of the gating glutamate 211 at the central anion-binding site of ClC-5 is mediated by the proton glutamate 268.  相似文献   

4.
ClC chloride channels and transporters play major roles in cellular excitability, epithelial salt transport, volume, pH, and blood pressure regulation. One family member, ClC-ec1 from Escherichia coli, has been structurally resolved crystallographically and subjected to intensive mutagenetic, crystallographic, and electrophysiological studies. It functions as a Cl/H+ antiporter, not a Cl channel; however, the molecular mechanism for Cl/H+ exchange is largely unknown. Using all-atom normal-mode analysis to explore possible mechanisms for this antiport, we propose that Cl/H+ exchange involves a conformational cycle of alternating exposure of Cl and H+ binding sites of both ClC pores to the two sides of the membrane. Both pores switch simultaneously from facing outward to facing inward, reminiscent of the standard alternating-access mechanism, which may have direct implications for eukaryotic Cl/H+ transporters and Cl channels.  相似文献   

5.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two a-helices and three b-strands arranged as b1-a1-b2-b3-a2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form a2 of the second CBS domain (CBS2). We demonstrate that interchanging a2 between CLH-3a and CLH-3b interchanges their gating properties. The "R-helix" of ClC proteins forms part of the ion conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the "R-helix linker". C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that a2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in a2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-like gating. We postulate that the R-helix linker interacts with CBS2 a2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.  相似文献   

6.
The CLC ‘Cl channel'' family consists of both Cl/H+ antiporters and Cl channels. Although CLC channels can undergo large, conformational changes involving cooperativity between the two protein subunits, it has been hypothesized that conformational changes in the antiporters may be limited to small movements localized near the Cl permeation pathway. However, to date few studies have directly addressed this issue, and therefore little is known about the molecular movements that underlie CLC-mediated antiport. The crystal structure of the Escherichia coli antiporter ClC-ec1 provides an invaluable molecular framework, but this static picture alone cannot depict the protein movements that must occur during ion transport. In this study we use fluorine nuclear magnetic resonance (NMR) to monitor substrate-induced conformational changes in ClC-ec1. Using mutational analysis, we show that substrate-dependent 19F spectral changes reflect functionally relevant protein movement occurring at the ClC-ec1 dimer interface. Our results show that conformational change in CLC antiporters is not restricted to the Cl permeation pathway and show the usefulness of 19F NMR for studying conformational changes in membrane proteins of known structure.  相似文献   

7.
Chloride channel proteins (ClC) are found in living systems where they transport chloride ions across cell membranes. Recently, the structure/function of two prokaryotic ClC has been determined but little is known about the role of these proteins in the microbial metabolism of chlorinated compounds. Here we show that transposon Tn5530 from Burkholderia cepacia strain 2a encodes a ClC protein (BcClC) which is responsible for expelling Cl(-) ions generated during the catabolism of 2,4-dichlorophenoxyacetic acid (a chlorinated herbicide). We found that BcClC has the ability to transport Cl(-) ions across reconstituted proteoliposome membranes. We created two mutants in which the intrachannel glutamate residue of the protein, known to be responsible for opening and closing the channel (i.e. gating), was changed in order to create constitutively open and closed forms. We observed that cells carrying the closed-channel protein accumulated Cl(-) ions intracellularly leading to a decrease in intracellular pH, cell stasis and death. Further, we established that BcClC has the same gating mechanism as that reported for the ClC protein from Salmonella typhimurium. Our results show that the physiological role of ClC is to maintain cellular homeostasis which can be impaired by the catabolism of chlorinated compounds.  相似文献   

8.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two α-helices and three β-strands arranged as β1-α1-β2-β3-α2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form α2 of the second CBS domain (CBS2). We demonstrate that interchanging α2 between CLH-3a and CLH-3b interchanges their gating properties. The “R-helix” of ClC proteins forms part of the ion-conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the “R-helix linker”. C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that α2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in α2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-LIKE gating. We postulate that the R-helix linker interacts with CBS2 α2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.Key words: ClC channel, chloride channel, homology model  相似文献   

9.
The ClC family encompasses two classes of proteins with distinct transport functions: anion channels and transporters. ClC-type transporters usually mediate secondary active anion–proton exchange. However, under certain conditions they assume slippage mode behavior in which proton and anion transport are uncoupled, resulting in passive anion fluxes without associated proton movements. Here, we use patch clamp and intracellular pH recordings on transfected mammalian cells to characterize exchanger and slippage modes of human ClC-4, a member of the ClC transporter branch. We found that the two transport modes differ in transport mechanisms and transport rates. Nonstationary noise analysis revealed a unitary transport rate of 5 × 105 s−1 at +150 mV for the slippage mode, indicating that ClC-4 functions as channel in this mode. In the exchanger mode, unitary transport rates were 10-fold lower. Both ClC-4 transport modes exhibit voltage-dependent gating, indicating that there are active and non-active states for the exchanger as well as for the slippage mode. ClC-4 can assume both transport modes under all tested conditions, with exchanger/channel ratios determined by the external anion. We propose that binding of transported anions to non-active states causes transition from slippage into exchanger mode. Binding and unbinding of anions is very rapid, and slower transitions of liganded and non-liganded states into active conformations result in a stable distribution between the two transport modes. The proposed mechanism results in anion-dependent conversion of ClC-type exchanger into an anion channel with typical attributes of ClC anion channels.  相似文献   

10.
Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ATP-binding cassette transporters in that it functions as an ion channel. In CFTR, ATP binding opens the channel, and its subsequent hydrolysis causes channel closure. We studied the conformational changes in the pore-lining sixth transmembrane segment upon ATP binding by measuring state-dependent changes in accessibility of substituted cysteines to methanethiosulfonate reagents. Modification rates of three residues (resides 331, 333, and 335) near the extracellular side were 10-1000-fold slower in the open state than in the closed state. Introduction of a charged residue by chemical modification at two of these positions (resides 331 and 333) affected CFTR single-channel gating. In contrast, modifications of pore-lining residues 334 and 338 were not state-dependent. Our results suggest that ATP binding induces a modest conformational change in the sixth transmembrane segment, and this conformational change is coupled to the gating mechanism that regulates ion conduction. These results may establish a structural basis of gating involving the dynamic rearrangement of transmembrane domains necessary for vectorial transport of substrates in ATP-binding cassette transporters.  相似文献   

11.
Kuang Z  Mahankali U  Beck TL 《Proteins》2007,68(1):26-33
H+/Cl- antiport behavior has recently been observed in bacterial chloride channel homologs and eukaryotic CLC-family proteins. The detailed molecular-level mechanism driving the stoichiometric exchange is unknown. In the bacterial structure, experiments and modeling studies have identified two acidic residues, E148 and E203, as key sites along the proton pathway. The E148 residue is a major component of the fast gate, and it occupies a site crucial for both H+ and Cl- transport. E203 is located on the intracellular side of the protein; it is vital for H+, but not Cl-, transport. This suggests two independent ion transit pathways for H+ and Cl- on the intracellular side of the transporter. Previously, we utilized a new pore-searching algorithm, TransPath, to predict Cl- and H+ ion pathways in the bacterial ClC channel homolog, focusing on proton access from the extracellular solution. Here we employ the TransPath method and molecular dynamics simulations to explore H+ pathways linking E148 and E203 in the presence of Cl- ions located at the experimentally observed binding sites in the pore. A conclusion is that Cl- ions are required at both the intracellular (S(int)) and central (S(cen)) binding sites in order to create an electrostatically favorable H+ pathway linking E148 and E203; this electrostatic coupling is likely related to the observed 1H+/2Cl- stoichiometry of the antiporter. In addition, we suggest that a tyrosine residue side chain (Y445), located near the Cl- ion binding site at S(cen), is involved in proton transport between E148 and E203.  相似文献   

12.
A structural perspective on ClC channel and transporter function   总被引:1,自引:0,他引:1  
Dutzler R 《FEBS letters》2007,581(15):2839-2844
The ClC chloride channels and transporters constitute a large family of membrane proteins that is involved in a variety of physiological processes. All members share a conserved molecular architecture that consists of a complex transmembrane transport domain followed by a cytoplasmic domain. Despite the strong conservation, the family shows an unusually broad variety of functional behaviors as some members work as gated chloride channels and others as secondary active chloride transporters. The conservation in the structure and the functional resemblance of gating and coupled transport suggests a strong mechanistic relationship between these seemingly contradictory transport modes. The cytoplasmic domains constitute putative regulatory components that are ubiquitous in eukaryotic ClC family members and that in certain cases interact with nucleotides thus linking ion transport to nucleotide sensing by yet unknown mechanisms.  相似文献   

13.
ClC-4 is a secondary active transporter that exchanges Cl ions and H+ with a 2:1 stoichiometry. In external SCN, ClC-4 becomes uncoupled and transports anions with high unitary transport rate. Upon voltage steps, the number of active transporters varies in a time-dependent manner, resembling voltage-dependent gating of ion channels. We here investigated modification of the voltage dependence of uncoupled ClC-4 by protons and anions to quantify association of substrates with the transporter. External acidification shifts voltage dependence of ClC-4 transport to more positive potentials and leads to reduced transport currents. Internal pH changes had less pronounced effects. Uncoupled ClC-4 transport is facilitated by elevated external [SCN] but impaired by internal Cl and I. Block by internal anions indicates the existence of an internal anion-binding site with high affinity that is not present in ClC channels. The voltage dependence of ClC-4 coupled transport is modulated by external protons and internal Cl in a manner similar to what is observed under uncoupling conditions. Our data illustrate functional differences but also similarities between ClC channels and transporters.  相似文献   

14.
Members of the ClC family of membrane proteins have been found in a variety of species and they can function as Cl- channels or Cl-/H+ antiporters. Three potential ClC genes are present in the Drosophila melanogaster genome. Only one of them shows homology with a branch of the mammalian ClC genes that encode plasma membrane Cl- channels. The remaining two are close to mammalian homologues coding for intracellular ClC proteins. Using RT-PCR we have identified two splice variants showing highest homology (41% residue identity) to the mammalian ClC-2 chloride channel. One splice variant (DmClC-2S) is expressed in the fly head and body and an additional, larger variant (DmClC-2L) is only present in the head. Both putative Drosophila channels conserve key features of the ClC channels cloned so far, including residues conforming the selectivity filter and C-terminus CBS domains. The splice variants differ in a stretch of 127 aa at the intracellular C-terminal portion separating cystathionate beta synthase (CBS) domains. Expression of either Drosophila ClC-2 variant in HEK-293 cells generated inwardly rectifying Cl- currents with similar activation and deactivation characteristics. There was great similarity in functional characteristics between DmClC-2 variants and their mammalian counterpart, save for slower opening kinetics and faster closing rate. As CBS domains are believed to be sites of regulation of channel gating and trafficking, it is suggested that the extra amino acids present between CBS domains in DmClC-2L might endow the channel with a differential response to signals present in the fly cells where it is expressed.  相似文献   

15.
The ClC family of Cl(-) channels and transporters comprises membrane proteins ubiquitously present in species ranging from prokaryotes to mammals. The recently solved structures of the bacterial ClC proteins have provided a good model to guide the functional experiments for the eukaryotic Cl(-) channels. Theoretical calculations based on the bacterial ClC structures have identified several residues critical for the Cl(-) binding energy in the Cl(-) transport pathway. It was speculated that the corresponding residues in eukaryotic Cl(-) channels might play similar roles for the channel functions. In this study, we made a series of mutations in three such residues in eukaryotic ClC Cl(-) channels (K149, G352, and H401 in ClC-0) and studied the functional consequences on the channel properties. A cysteine modification approach was also employed to evaluate the electrostatic effects of the charge placed at these three positions. The experimental results revealed that among the three residues tested, K149 plays the most important role in controlling both the gating and the permeation functions of ClC-0. On the other hand, mutations of H401 alter the channel conductance but not the gating properties, while mutations of G352 result in very little functional consequence. The mutation of K149 into a neutral residue leucine (K149L) shifts the activation curve and leads to flickery channel openings. The anion permeability ratios derived from bi-ionic experiments are also significantly altered in that the selectivity of Cl(-) over other anions is decreased. Furthermore, removing the positive charge at this position reduces and increases, respectively, the accessibility of the negatively and positively charged methane thiosulfonate reagents to the pore. The control of the accessibility to charged MTS reagents and the regulation of the anion permeation support the idea that K149 exerts an electrostatic effect on the channel function, confirming the prediction from computational studies.  相似文献   

16.
EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4′-diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties.  相似文献   

17.
Chloride channels and transporters of the CLC gene family are expressed in virtually all cell types and are crucial in the regulation of membrane potential, chloride homeostasis and intravesicular pH. There are two gating processes that open CLC channels-fast and slow. The fast gating process in CLC channels has recently been linked to a small movement of a glutamate side chain. However, the molecular mechanism underlying the slow gating process is still elusive. Using spectroscopic microscopy, we observed a large backbone movement in the C terminus of the CLC-0 chloride channel that was functionally linked to slow gating. We further showed that the C-terminal movement had a time course similar to slow gating. In addition, a mutation known to lock the slow gate open prevented movement of the C terminus. When combined with recent structural information on the CLC C terminus, our findings provide a structural model for understanding the conformational changes linked to slow gating in CLC transport proteins.  相似文献   

18.
The gating of ClC-0, the voltage-dependent Cl- channel from Torpedo electric organ, is strongly influenced by Cl- ions in the external solution. Raising external Cl- over the range 1-600 mM favors the fast- gating open state and disfavors the slow-gating inactivated state. Analysis of purified single ClC-0 channels reconstituted into planar lipid bilayers was used to identify the role of Cl- ions in the channel's fast voltage-dependent gating process. External, but not internal, Cl- had a major effect on the channel's opening rate constant. The closing rate was more sensitive to internal Cl- than to external Cl-. Both opening and closing rates varied with voltage. A model was derived that postulates (a) that in the channel's closed state, Cl- is accessible to a site located at the outer end of the conduction pore, where it binds in a voltage-independent fashion, (b) that this closed conformation can open, whether liganded by Cl- or not, in a weakly voltage-dependent fashion, (c) that the Cl(-)-liganded closed channel undergoes a conformational change to a different closed state, such that concomitant with this change, Cl- ion moves inward, conferring voltage-dependence to this step, and (d) that this new Cl(-)- liganded closed state opens with a very high rate. According to this picture, Cl- movement within the pre-open channel is the major source of voltage dependence, and charge movement intrinsic to the channel protein contributes very little to voltage-dependent gating of ClC-0. Moreover, since the Cl- activation site is probably located in the ion conduction pathway, the fast gating of ClC-0 is necessarily coupled to ion conduction, a nonequilibrium process.  相似文献   

19.
Chloride channel (CLC)-type Cl-/H+ exchangers are widespread throughout the biological world, and one of these, CLC-ec1 from Escherichia coli, has been extensively studied. The structure of this protein is known, and several of its mechanistic hot spots have been identified, but a mechanism for Cl-/H+ exchange has not previously been offered. We herein confirm by direct measurements of Cl- and H+ fluxes a Cl--to-H+ exchange stoichiometry of 2, and summarize experimental facts pertinent to the exchange mechanism. While the mechanism must involve a conformational cycle of alternating exposure of substrate-binding sites to the two sides of the membrane, CLC transporters do not adhere to a familiar ping-pong scheme in which the two ions bind in a mutually exclusive fashion. Instead, Cl- and H+ occupy the ion-binding region simultaneously. A conformational cycle is proposed that accounts for the exchange stoichiometry, several key mutants and the tendency of the protein to become uncoupled and allow 'slippage' of Cl-.  相似文献   

20.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号