首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarkar R  Pal SK 《Biomacromolecules》2007,8(11):3332-3339
We report structural and dynamical aspects of DNAs from various sources including synthetic oligonucleotides in bulk buffer and as a complex with histone1 (H1). High-resolution transmission electron microscopic (HRTEM) studies reveal the structural change of the DNAs upon complexation with H1 leading to formation of compact-globular and hollow-toroidal particles. In order to explore the functionality of ligand binding of the DNAs and their complexes with H1, we have used two biologically common fluorescent probes Hoechst 33258 (H33258) and Ethidium (EB) as model ligands. Picosecond resolved fluorescence and polarization gated anisotropy studies examined that the minor groove binding of H33258 to the genomic DNA-H1 complex remains almost unaltered. However, the intercalative interaction of EB with the DNA in the complex is severely perturbed compared to that with the DNA in bulk buffer. Time-dependent solvochromic effect of the probe H33258 further elucidates the dynamical solvation, which is reflective of the overall environmental relaxation of the DNAs upon condensation by H1. We have also performed circular dichroism (CD) studies on the DNAs and their complexes with H1, which reveal the change in conformation of the DNAs in the complexes. Our studies in the ligand-binding mechanisms of the DNA-H1 complex are important to understand the mechanism of drug binding to linker DNA in condensed chromatin.  相似文献   

2.
The interactions of calf thymus DNA with tetracycline (TC), 7-chlorotetracycline (CTC) and 6-dimethyl-7-chlorotetracycline (DMTC) were assessed employing spectrofluorometric and circular dichroism (CD) techniques. The Scatchard analysis revealed relatively lesser binding affinity of TC (Ka= 1.2 x 10(7) lmol(-1)) vis-a-vis CTC (Ka= 3.4 x 10(7) lmol(-1)) and DMTC (Ka= 3.0 x 10(7) lmol(-1)) with DNA. The data suggested both the intercalative and electrostatic nature of binding between the tetracyclines and DNA. The presence of Cu(II) augmented the interaction of tetracyclines with DNA, and resulted in red shift by 12 nm in CD spectra of tetracycline. The molar ellipticity (theta) also changed significantly for CTC and DMTC. The data unequivocally demonstrated the DNA binding potential of tetracyclines both in the presence and absence of Cu(II) ions in dark. The enhanced binding of tetracyclines in presence of Cu(II), ensuing conformational changes in DNA secondary structure to a varying extent, reflects differential reactivity of ligand chromophores.  相似文献   

3.
Zhao P  Xu LC  Huang JW  Zheng KC  Liu J  Yu HC  Ji LN 《Biophysical chemistry》2008,134(1-2):72-83
A novel cationic porphyrin-anthraquinone (Por-AQ) hybrid has been synthesized and characterized. Using the combination of absorption titration, fluorescence spectra, circular dichroism (CD) as well as viscosity measurements, the binding properties of the hybrid to calf thymus (CT) DNA have been investigated compared with its parent porphyrin. The experimental results show that at low [Por]/[DNA] ratios, the parent porphyrin binds to DNA in an intercalative mode while the hybrid binds in a combined mode of outside binding (for porphyrin moiety) and partial intercalation (for anthraquinone). Ethidium bromide (EB) competition experiment determined the binding affinity constants (K(app)) of the compounds for CT DNA. Theoretical calculational results applying the density functional theory (DFT) can explain the different DNA binding behaviors reasonably. (1)O(2) was suggested to be the reactive species responsible for the DNA photocleavage of porphyrin moieties in both two compounds. The wavelength-depending cleavage activities of the compounds were also investigated.  相似文献   

4.
Jia T  Jiang ZX  Wang K  Li ZY 《Biophysical chemistry》2006,119(3):295-302
The binding properties of cationic porphyrin-phenylpiperazine hybrids to calf thymus (CT) DNA were investigated by using absorption, fluorescence and circular dichroism (CD) spectra, and the apparent affinity binding constants (K(app)) of the porphyrins for CT DNA were determined by using a competition method with ethidium bromide (EB). Intercalation of porphyrin into CT DNA occurred when two phenylpiperazines were introduced at cis position onto the periphery of cationic porphyrin. The photocleavages of pBR322 plasmid DNA by the porphyrins were consistent with the values of K(app). With [porphyrin]/[DNA base pairs] ratio increased, the binding mode tended to be outside binding, and the cleavage abilities of the porphyrins varied. In the presence of sodium azide, a quencher of 1O2, the cleavage of DNA by the porphyrin of intercalation was less inhibited.  相似文献   

5.
Hairpin structure is a common feature of DNA molecules. They are located near functional loci, such as regulation and promotion sites, as well as in cruciform structures, and they provide potential binding sites for endogenous proteins. The effects of different hairpin loops that are composed of one to five thymidines, designated as L1-L5, and have a common self-complementary stem, CTATATAG, on the interactions with Sac7d were studied. In thermostability studies, Sac7d stabilized a tetra-loop hairpin DNA and hairpin DNA with GTTC tetra-loop regions better than it stabilized tri- and penta-loops. Circular dichroism (CD) spectra showed that hairpins retained primarily a B-type conformation upon Sac7d binding. Intermolecular interactions between hairpins were likely decreased, due to the Sac7d-induced kinks, as shown by an increase at 220nm in the CD spectra. Surface plasmon resonance (SPR) observations suggested that the rates of Sac7d binding to hairpin DNA depend on the loop size of the hairpin duplexes. At a fixed stem length, Sac7d binds to tetra-loop hairpin DNA duplexes with a higher association rate and lower dissociation rate, compared with their tri- and penta-loop counterparts. In addition, the tri-loop and GTC tri-loop hairpin DNA had lower affinity for Sac7d because of the smaller and tighter loop size. Our study indicates that Sac7d binding affinity to hairpin DNA is primarily determined by loop size and stem integrity, and the results presented here provide a model for studies concerning other minor groove DNA-binding proteins that kink hairpin DNA.  相似文献   

6.
Zinc mononuclear complexes with the second-generation quinolone antibacterial drug enrofloxacin in the absence or presence of a nitrogen donor heterocyclic ligand 1,10-phenanthroline or 2,2′-bipyridine have been synthesized and characterized. Enrofloxacin is on deprotonated mode acting as a bidentate ligand coordinated to zinc ion through the ketone and a carboxylato oxygen atoms. The crystal structure of bis(enrofloxacinato)(1,10-phenanthroline)zinc(II), 2, has been determined by X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   

7.
The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA.dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA.dT preference in their binding affinity to DNA. Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC).poly(dG-dC), poly(rA).poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA).poly(dT) and poly(dI).poly(dC) indicating a slow kinetics. The preferred binding to dA.dT base pairs in DNA decreases in the order from SN-61367 greater than SN-13232 greater than SN-6324,SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA.dT).poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAse I cleavage of poly(dA-dT).poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNA binding and dA.dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

8.
Teif  V. B.  Lando  D. Yu. 《Molecular Biology》2001,35(1):106-107
A method for calculating the curves of DNA transition from linear to condensed state upon binding of condensing ligands has been developed. The character of the transition and ligand concentration necessary for condensation have been shown to be governed by the length of DNA molecule, energy and stoichiometry parameters of the DNA–ligand complex (equilibrium constant between linear and condensed form in the absence of ligands, constants for ligand binding to linear and condensed forms, the number of base pairs covered by one ligand, etc.). The results of the calculations indicate that a slight difference in the free energies of these DNA states (less than 6 cal/mol(bp) for a DNA of 500 bp) is sufficient for the existence of a stable linear state in the absence of ligands (in free DNA) and the formation of stable condensed state upon complexation.  相似文献   

9.
The interaction between pyrano[3, 2-f]quinoline (PQ) and calf thymus DNA (CTDNA) using spectroscopic and molecular modeling approach has been presented here. Apparent association constant (1.05×105 L/mol) calculated from UV-vis specta, indicates a moderate complex formation between CTDNA and PQ. The quenching phenomena as obtained from emission spectra of ethidium bromide (EB)–CTDNA by PQ was found to be a dynamic one and the binding constants found to be 8.64, 9.25, 11.17, 12.03 × 104 L/mol at 293, 300, 308, and 315 K. Thermodynamic parameter enthalpy change (ΔH) and entropy change (ΔS), indicates weak force like van der Walls force and hydrogen bonds having the key role in this binding process. The results of circular dichroism (CD) demonstrate that PQ has not induced characteristic changed in CTDNA. Results achieved from UV absorption and fluorescence spectroscopy indicating the binding mode of PQ with DNA seems to be a nonintercalative binding. The theoretical results as originating from molecular modeling showed that PQ possibly will bind into the hydrophobic region of DNA having docking binding energy = ?10.03 kcal/mol and the obtained results are in consonance with the inferences obtained from experimental data. This result is important for the better understanding of pharmaceutical aspects of binding affinity of PQ and CTDNA.  相似文献   

10.
Circular dichroism (CD) and fluorescence spectra have been measured for complexes formed between four-stranded G4-DNA and ethidium bromide (EB). The EB-G4-DNA complexes showed similar induced CD spectra, compared with the induced CD spectrum of the EB-calf thymus DNA complex.  相似文献   

11.
Using circular dichroism (CD) and electronic absorption spectroscopy techniques, interaction of the natural dietary cis-carotenoid bixin with an important human plasma protein in vitro was demonstrated for the first time. The induced CD spectra of bixin obtained under physiological conditions (pH 7.4, 37 degrees C) revealed its binding to the serum acute-phase reactant alpha(1)-acid glycoprotein (AGP), a member of the lipocalin protein family. Spectral features of the extrinsic Cotton effects of bixin suggested the inclusion of a single, chirally distorted ligand molecule into the asymmetric protein environment. Compared with the absorption spectra obtained in ethanol and benzene, the strong red shift of the main absorption peak of AGP-bound bixin indicated that the proposed binding site was rich in aromatic residues, and also suggested that hydrophobic interactions were involved in the binding. Using the data obtained from the CD titration experiments, the association constant (Ka=4.5x10(5)M-1) and stoichiometry of the binding (0.15) were calculated. The low value of the stoichiometry was attributed to the structural polymorphism of AGP. To the authors' knowledge, the current study represents the first human lipocalin protein for which carotenoid binding affinity has been explored in vitro with these techniques.  相似文献   

12.
A method for calculating the curves of DNA transition from linear to condensed state upon binding of condensing ligands has been developed. The character of the transition and ligand concentration necessary for condensation have been shown to be governed by the length of DNA molecule, energy and stoichiometry parameters of DNA-ligand complex (equilibrium constant between linear and condensed form in the absence of ligands, constants for ligand binding to linear and condensed forms, the number of base pairs covered by one ligand, etc.). The results of the calculations indicate that only slight difference in the free energies of these states in free DNA (less than 6 cal/mole(bp) for DNA of 500 bp long) is sufficient for the existence of stable linear state in the absence of ligands (in free DNA) and the formation of stable condensed state upon complexation.  相似文献   

13.
Molecular docking, molecular mechanics, molecular dynamics and relaxation matrix simulation protocols have been extensively used to generate the structural details of ligand-receptor complexes in order to understand the binding interactions between the two entities. Experimental methods like NMR spectroscopy and X-ray crystallography are known to provide structural information about ligand-receptor complexes. In addition, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking have also been utilized to decode the phenomenon of the ligand-DNA interactions, with good correlation between experimental and computational results. The DNA binding affinity was demonstrated by analysing fluorescence spectral data. Structural rigidity of DNA upon ligand binding was identified by CD spectroscopy. Docking is carried out using the DNA-Dock program which results in the binding affinity data along with structural information like interatomic distances and H-bonding, etc. The complete structural analyses of various drug-DNA complexes have afforded results that indicate a specific DNA binding pattern of these ligands. It also exhibited that certain structural features of ligands can make a ligand to be AT- or GC-specific. It was also demonstrated that changing specificity from AT base pairs to GC base pairs further improved the DNA topoisomerase inhibiting activity in certain ligands. Thus, a specific molecular recognition signature encrypted in the structure of ligand can be decoded and can be effectively employed in designing more potent antiviral and antitumour agents.  相似文献   

14.
D G Dalgleish  A R Peacocke 《Biopolymers》1971,10(10):1853-1863
The circular dicrosim (CD) spectra of complexes of DNA with ethidiun bromnide, profiavine, 9-aminoacridine and 4-etliyl-9-amino-acridine have been determined between 220 and 450 nm, the range lieing extended to 600 nm for ethidiufm bromide. The variation of the magnitude of the visible and near—ultraviolet CD spectra of ethidium bromide—DNA complexes with the amount of ligand bound (r) suggests a common binding position with profiavine. On the other hand, 4-ethyl-9-aminoacndine complexed to DNA shows CD spectra not distinguishable from those of 9-aminnoacnidmc in both the visible and ultraviolet. The interpretation of these results with respect to the stereochemistry of the DNA-ligand complexes is discussed.  相似文献   

15.
Nickel(II) complexes with the first-generation quinolone antibacterial agent flumequine in the presence or absence of nitrogen donor heterocyclic ligands (4-benzylpyridine, pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been structurally characterized by physicochemical and spectroscopic techniques. The experimental data suggest that flumequine acts as deprotonated bidentate ligand coordinated to Ni(II) through the carboxylato and ketone oxygen atoms. The crystal structures of bis(4-benzylpyridine)bis(flumequinato)nickel(II) 2, (2,2′-bipyridine)bis(flumequinato)nickel(II) 4 and (1,10-phenanthroline)bis(flumequinato)nickel(II) 5 have been determined by X-ray crystallography and are the first crystal structures of flumequinato complexes reported. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes bind to CT DNA and bis(aqua)bis(flumequinato)nickel(II) exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The cyclic voltammograms of the complexes recorded in DMSO solution and in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they bind to CT DNA by the intercalative binding mode. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.  相似文献   

16.
It is shown that, when irradiated in the visible, ethidium bromide (EB) engages in direct photochemistry with its DNA binding site. At the photochemical end point, an average of one single-strand break is produced per bound EB molecule in a reaction which also bleaches the dye chromophore. Using high-resolution electrophoresis, we have mapped the distribution of EB photocleavage sites on DNA, at one-base resolution. It is argued that because the photocleavage is stoichiometric, the resulting pattern is similar to, if not identical with, the local distribution of EB binding affinity. When interpreted in the context of the extensive thermodynamic and structural data which are available for EB, a binding distribution of that kind can be used to infer details of DNA structure variation within the underlying helix. As a first application of the method, we have used EB to probe the structure of a 265 bp fragment of DNA, which had been described as being bent as the result of a periodic array of oligo(A) segments [Kitchin et al. (1986) J. Biol. Chem. 261, 11302]. The EB mapping data provide evidence that the oligo(A) elements in this fragment assume a local secondary structure which is different than that assumed by isolated ApA nearest neighbors and that the ends of the oligo(A) elements comprise a junctional domain with EB binding properties which differ from those of the oligo(A) element or of random-sequence DNA.  相似文献   

17.
Two structurally related ligands (L) 4,5,9,18-tetraazaphenanthreno[9,10-b] triphenylene (taptp) and 2,3-diphenyl-1,4,8,9-tetraazatriphenylene (dptatp), and their related complexes of [Ru(bpy)2L]2+ have been synthesized and characterized by elemental analyses, 1H NMR and mass spectra. Their electrochemical properties were also examined. Both complexes emit intense luminescence in organic solvent but are quenched in water to different extents. The interactions of the complexes with calf thymus DNA have been investigated by viscosity, absorption, emission and circular dichroism spectra. The intrinsic binding constants of [Ru(bpy)2(taptp)]2+ and [Ru(bpy)2(dptatp)]2+ are 1.7 x 10(5) and 3.8 x 10(4) M-1, respectively. All data indicate that both complexes bind enantioselectively to double-stranded calf thymus DNA via the intercalative mode, with stronger affinity for the fully planar ligand complex of [Ru(bpy)2(taptp)]2+.  相似文献   

18.
Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5'-CCTATATCC-3' in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis-diammine Pt(II)-bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5'-CCTATATCC-3' (I), 5'-CCTTAATCC-3' (II), 5'-CCTTATTCC-3' (III), 5'-CCTTTTTCC-3' (IV) and 5'-CCAATTTCC-3' (V) decreases in the order I = II > III > IV > V . The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

19.
The equilibrium binding of ethidium bromide (EB) to two small 147 base-pair (bp) DNA restriction fragments, which exhibit different mobilities in polyacrylamide gels, was investigated by CD. Two larger DNA restriction fragments and calf thymus DNA were also studied for comparison. Difference spectra were calculated by subtracting the spectrum of the pure DNA from the spectra of its DNA–EB complexes. The D/P ratios ranged from 0.03 to 1.0. The difference CD spectra of all fragments are characterized by bands with maxima near 310, 275, and 207 nm, and minima near 290, 253, 225, and 190 nm. The band near 310 nm, which has a shoulder at about 335 nm, has zero intensity at D/P ≤ 0.05, and rises to a plateau value, different for each fragment, at D/P ? 0.3 for large fragments (≥ 1400 bp), and D/P ~ 0.7 for the two small 147 bp fragments. The minimum near 290 nm is markedly blue shifted with increasing D/P, the wavelength of the extremum corresponding approximately to the wavelength of the uv absorption maximum of the DNA–EB complex. The negative amplitude of this band at D/P = 1.0 depends on the molecular weight of the DNA. The difference CD maximum near 275 nm is positive at low D/P ratios, increases and goes through a maximum at D/P = 0.06–0.1, and then becomes increasingly negative with increasing D/P. The amplitude of the negative ellipticity per added dye is constant at high D/P ratios, suggesting that the transition can be attributed to outside-bound EB molecules. The ellipticities at 310, 290, and 253 nm increase in absolute magnitude with increasing D/P at approximately the same rate, suggesting that all three bands are associated with the same optical and/or conformational transition. For the two small 147 bp fragments the fractional increases in amplitude of these bands parallel the fractional increase in length of the DNA upon binding EB, determined by electric birefringence measurements. The titration of the restriction fragments with EB was also followed by optical absorption. Two end points are observed, the first at a D/P ratio of ~ 0.1, reflecting the transition between intercalated and outside-bound dye molecules, and the second at D/P ? 1.0, the equivalence point of the titration.  相似文献   

20.
Circular dichroism spectroscopy has been used to investigate the influence of polylysine and polyarginine on the transition to a condensed state of DNA brought about by high concentrations of polyethyleneglycol and salt. From the dependence on DNA concentration of the CD signals, the anomalous CD of free DNA in polyethyleneglycol/salt solution was attributed to the intermolecular association of DNA molecules. The CD spectral changes in polyethyleneglycol/salt solution of the DNA - polylysine complex were indistinguishable from those of free DNA while the DNA-polyarginine complex suffered much smaller spectral changes as compared with free DNA, at low DNA concentrations where time-independent CD spectra were observed in polyethyleneglycol/salt solution for both the complexed and free DNA. The repression of the spectral change by the latter complex was more remarkable at higher ratios of polyarginine to DNA. The facts indicate that, whereas polylysine binding has little influence on the intermolecular structural transition of double-stranded DNA into a compact molecular configuration in polyethyleneglycol/salt solution, polyarginine binding has an effect of inhibiting the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号