首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.  相似文献   

2.
The desmosome and pemphigus   总被引:3,自引:2,他引:1  
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.  相似文献   

3.
Desmosomes and adherens junctions are cadherin-based protein complexes responsible for cell-cell adhesion of epithelial cells. Type 1 cadherins of adherens junctions show specific homophilic adhesion that plays a major role in developmental tissue segregation. The desmosomal cadherins, desmocollin and desmoglein, occur as several different isoforms with overlapping expression in some tissues where different isoforms are located in the same desmosomes. Although adhesive binding of desmosomal cadherins has been investigated in a variety of ways, their interaction in desmosome-forming epithelial cells has not been studied. Here, using extracellular homobifunctional cross-linking, we provide evidence for homophilic and isoform-specific binding between the Dsc2, Dsc3, Dsg2, and Dsg3 isoforms in HaCaT keratinocytes and show that it represents trans interaction. Furthermore, the cross-linked adducts are present in the detergent-insoluble fraction, and electron microscopy shows that extracellular cross-linking probably occurs in desmosomes. We found no evidence for either heterophilic or cis interaction, but neither can be completely excluded by our data. Mutation of amino acid residues Trp-2 and Ala-80 that are important for trans interaction in classical cadherin adhesive binding abolished Dsc2 binding, indicating that these residues are also involved in desmosomal adhesion. These interactions of desmosomal cadherins may be of key importance for their ordered arrangement within desmosomes that we believe is essential for desmosomal adhesive strength and the maintenance of tissue integrity.  相似文献   

4.
Desmosomes play a critical role in the maintenance of normal tissue architecture. Skin blistering can occur when desmosomal adhesion is compromised by antibodies in autoimmune diseases such as pemphigus. Inherited mutations in genes encoding desmosomal constituents can adversely affect the skin, and result in heart abnormalities. Desmosomes may have a tumour suppressor function: expression of desmosomal components is reduced in some human cancers, and desmosomal cadherins have the capacity to suppress the invasiveness of cells in culture. Transgenic animal research has provided important insights into the role of these junctions in normal epithelial morphogenesis and disease.  相似文献   

5.
New evidence from blocking desmosomal adhesion with anti-adhesion peptides reveals a role for desmosomes in cell positioning in morphogenesis. Desmosomal adhesion is necessary for the stability of adherens junctions in epithelial cell sheets. Knockout and mis-expression of desmosomal cadherins in mice suggests that they may function directly or indirectly in regulating epidermal differentiation. Protein kinase C signalling and tyrosine phosphorylation appear to regulate desmosomal adhesion. There are new insights into the role of desmosomal cadherins in autoimmune, infectious and genetic disease.  相似文献   

6.
Abstract

Autoantibodies from patients suffering from the autoimmune blistering skin disease pemphigus can be applied as tools to study desmosomal adhesion. These autoantibodies targeting the desmosomal cadherins desmoglein (Dsg) 1 and Dsg3 cause disruption of desmosomes and loss of intercellular cohesion. Although pemphigus autoantibodies were initially proposed to sterically hinder desmosomes, many groups have shown that they activate signaling pathways which cause disruption of desmosomes and loss of intercellular cohesion by uncoupling the desmosomal plaque from the intermediate filament cytoskeleton and/or by interfering with desmosome turnover. These studies demonstrate that desmogleins serve as receptor molecules to transmit outside-in signaling and demonstrate that desmosomal cadherins have functions in addition to their adhesive properties. Two central molecules regulating cytoskeletal anchorage and desmosome turnover are p38MAPK and PKC. As cytoskeletal uncoupling in turn enhances Dsg3 depletion from desmosomes, both mechanisms reinforce one another in a vicious cycle that compromise the integrity and number of desmosomes.  相似文献   

7.
《Biophysical journal》2022,121(22):4325-4341
Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.  相似文献   

8.
Desmoglein 1 (Dsg1) is a component of desmosomes present in the upper epidermis and can be targeted by autoimmune antibodies or bacterial toxins, resulting in skin blistering diseases. These defects in tissue integrity are believed to result from compromised desmosomal adhesion; yet, previous attempts to directly test the adhesive roles of desmosomal cadherins using normally non-adherent L cells have yielded mixed results. Here, two complementary approaches were used to better resolve the molecular determinants for Dsg1-mediated adhesion: (1) a tetracycline-inducible system was used to modulate the levels of Dsg1 expressed in L cell lines containing desmocollin 1 (Dsc1) and plakoglobin (PG) and (2) a retroviral gene delivery system was used to introduce Dsg1 into normal human epidermal keratinocytes (NHEK). By increasing Dsg1 expression relative to Dsc1 and PG, we were able to demonstrate that the ratio of Dsg1:Dsc1 is a critical determinant of desmosomal adhesion in fibroblasts. The distribution of Dsg1 was organized at areas of cell-cell contact in the multicellular aggregates that formed in these suspension cultures. Similarly, the introduction of Dsg1 into NHEKs was capable of increasing the aggregation of single cell suspensions and further enhanced the adhesive strength of intact epithelial sheets. Endogenous Dsc1 levels were also increased in NHEKs containing Dsg1, providing further support for the coordination of these two desmosomal cadherins in regulating adhesive structures. These Dsg1-mediated effects on intercellular adhesion were directly related to the presence of an intact extracellular domain as ETA, a toxin that specifically cleaves this desmosomal cadherin, inhibited adhesion in both fibroblasts and keratinocytes. Collectively, these observations demonstrate that Dsg1 promotes the formation of intercellular adhesion complexes and suggest that the relative level of Dsg and Dsc expressed at the cell surface regulates this adhesive process.  相似文献   

9.
Cell adhesion and communication are interdependent aspects of cell behavior that are critical for morphogenesis and tissue architecture. In the skin, epidermal adhesion is mediated in part by specialized cell-cell junctions known as desmosomes, which are characterized by the presence of desmosomal cadherins, known as desmogleins and desmocollins. We identified a cadherin family member, desmoglein 4, which is expressed in the suprabasal epidermis and hair follicle. The essential role of desmoglein 4 in skin was established by identifying mutations in families with inherited hypotrichosis, as well as in the lanceolate hair mouse. We also show that DSG4 is an autoantigen in pemphigus vulgaris. Characterization of the phenotype of naturally occurring mutant mice revealed disruption of desmosomal adhesion and perturbations in keratinocyte behavior. We provide evidence that desmoglein 4 is a key mediator of keratinocyte cell adhesion in the hair follicle, where it coordinates the transition from proliferation to differentiation.  相似文献   

10.
Abstract

Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.  相似文献   

11.
It is widely accepted that apoptosis plays an important role in the development of the heart as well as in different heart diseases. Despite extensive research efforts, many issues regarding apoptosis in the heart remain unsolved, including the detection of apoptotic cardiomyocytes, their morphological features, the mechanisms of their removal and the clinical significance of apoptosis in the heart. It has been suggested that fetal cardiomyocytes resemble epithelial tissues. To test this hypothesis, we analyzed the expression of an epithelial marker cytokeratin 18 (CK18) and caspase-cleaved-CK18, recognized by antibody M30, as well as the expression of cleaved caspase-3 and desmosomal and classical cadherins, major components of desmosomes and adherens junctions in fetal hearts in comparison to infant and adult human hearts. We found that, in fetal hearts, cardiomyocytes expressed CK18 and that apoptotic cardiomyocytes expressed caspase-cleaved CK18, being recognized by antibody M30. Furthermore, desmosomal and classical cadherins exhibited a membraneous reaction similar to epithelial tissues. In adults and children after the age of 6 months, cadherins were localized in the intercalated disks, cardiomyocytes lost CK18 expression and apoptotic cardiomyocytes were no longer recognized by M30. We conclude that apoptosis in the developing human heart resembles apoptosis in epithelial tissues, exhibiting different characteristics than in the adult human heart.  相似文献   

12.
Desmosomes are intercellular junctions of epithelia and are of widespread importance in the maintenance of tissue architecture. We provide evidence that desmosomal adhesion has a function in epithelial morphogenesis and cell-type-specific positioning. Blocking peptides corresponding to the cell adhesion recognition (CAR) sites of desmosomal cadherins block alveolar morphogenesis by epithelial cells from mammary lumen. Desmosomal CAR-site peptides also disrupt positional sorting of luminal and myoepithelial cells in aggregates formed by the reassociation of isolated cells. We demonstrate that desmosomal cadherins and E-cadherin are comparably involved in epithelial morphoregulation. The results indicate a wider role for desmosomal adhesion in morphogenesis than has previously been considered.  相似文献   

13.
The desmosomal cadherins comprise the desmocollins and desmogleins and are involved in epithelial cell-cell adhesion. There are three desmocollins (DSC 1-3) and three desmogleins (DSG 1-3) that are expressed in a tissue- and development-specific manner. Desmosomal proteins have been implicated in a number of disorders characterized by loss of cell-cell adhesion and trauma-induced skin fragility. Therefore, the desmocollins are potential candidates for genodermatoses involving epithelial tissues. In order to screen the entire DSC1 and DSC3 genes, we have characterized their intron-exon organization. The DSC1 gene comprises 17 exons spanning approximately 33 kb on 18q12.1, and the DSC3 gene comprises 17 exons spanning approximately 49 kb on 18q12.1. We have also developed a comprehensive PCR-based mutation detection strategy for desmocollins 1, 2, and 3 using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

14.
Epidermis is a self-renewing, multilayered tissue composed primarily of keratinocytes. The epidermal keratinocyte follows a terminal differentiation pathway that under normal circumstances is tightly linked to its position within the epidermis and culminates in the formation of the protective barrier (stratum corneum) that constitutes the outermost layer of skin. Strong but pliant adhesive mechanisms are essential for normal functioning of the epidermis. In the epidermis, adhesion is mediated primarily by four structures: hemidesmosomes and focal adhesions, which function in cell-matrix adhesion, and desmosomes and adherens junctions, which function in cell-cell adhesion. In this review we concentrate on the transmembrane components of these structures, which are thought to mediate directly the adhesive function. Members of the integrin family of adhesion molecules comprise the transmembrane components of hemidesmosomes and focal adhesions, although hemidesmosomes also have a second, unrelated transmembrane molecule known as 'bullous pemphigoid antigen 2'. Members of the cadherin family are the transmembrane constituents of desmosomes and adherens junctions. Desmosomes consistently contain two types of cadherins (desmoglein and desmocollin), while adherens junctions may contain only one type of cadherin (E- or P-cadherin). Expression of most of the transmembrane components varies with the position of the keratinocyte within the epidermis and thus may reflect the degree of epidermal differentiation. All of the integrin subunits have been localized predominantly to the basal layer. In contrast, the cadherins show very complex expression patterns throughout the epidermis. Desmogleins and desmocollins (the desmosomal cadherins) are each encoded by three genes, and the expression of each gene is limited to certain epidermal layers. With respect to the cadherins of the adherens junction, it has been shown that E-cadherin is present throughout the epidermis, while P-cadherin is limited to the basal layer. Interestingly, these complex expression patterns of integrins and cadherins within the epidermis may not simply be passive events in differentiation; rather, evidence is accumulating that adhesion molecules can exert a dynamic role in epidermal differentiation/stratification. For example, decreased adhesion to extracellular matrix, induced by changes in one or more integrins, appears to be a signal that induces certain differentiation-related events. Even more profound effects on epidermal morphogenesis have been demonstrated for the cadherins. E- and/or P-cadherin is required not only to initiate normal intercellular junction formation but also for the subsequent development of a stratified epithelium. Thus, the findings to date with both integrins and cadherins suggest that adhesion molecules may function not just as direct mediators of adhesion, but also as regulators of epidermal stratification, differentiation, and morphogenesis.  相似文献   

15.
Desmosomal cadherins are a family of calcium regulated proteins involved in the formation of desmosomes, a type of cell junction important in maintaining cell adhesion and tissue stability. The desmosomal plaque consists of members of the desmosomal cadherin, plakin and armadillo family of proteins. Desmosomal cadherins are transmembrane glycoproteins that interact with desmosomal cadherins of the adjacent cells via their extracellular repeat domains and are divided in two subfamilies, the desmogleins (Dsg) and the desmocollins (Dsc). On the cytoplasmic side, the cadherins connect to the intermediate filament (IF) network indirectly by interacting with plakin and armadillo proteins. Here, we report the elucidation of the genomic structure of two mouse desmocollin genes, Dsc2 and Dsc3. Interestingly, at the genomic level, desmocollins show a higher degree of similarity to the classical cadherins, such as E-cadherin, than to the desmogleins.  相似文献   

16.
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.  相似文献   

17.
Desmosomes mediate intercellular adhesion through desmosomal cadherins, which interface with plakoglobin (PG) and desmoplakin (DP) to associate with the intermediate filament (IF) cytoskeleton. Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Increasing in size and number, desmosomes continue their prominence in extra-embryonic tissues, but as development proceeds, they also become abundant in a number of embryonic tissues, including heart muscle, epidermis and neuroepithelium. Previously, we explored the functional importance of desmosomes by ablating the Dsp gene. Homozygous Dsp mutant embryos progressed through implantation, but did not survive beyond E6.5, owing to a loss or instability of desmosomes and tissue integrity. We have now rescued the extra-embryonic tissues by aggregation of tetraploid (wild-type) and diploid (Dsp mutant) morulae. These animals survive several days longer, but die shortly after gastrulation, with major defects in the heart muscle, neuroepithelium and skin epithelium, all of which possess desmosomes, as well as the microvasculature, which does not. Interestingly, although wild-type endothelial cells of capillaries do not form desmosomes, they possess unusual intercellular junctions composed of DP, PG and VE-cadherin. The severity in phenotype and the breadth of defects in the Dsp mutant embryo is greater than PG mutant embryos, substantiating redundancy between PG and other armadillo proteins (e.g. beta-catenin). The timing of lethality is similar to that of the VE-cadherin null embryo, suggesting that a participating cause of death may be a defect in vasculature, not reported for PG null embryos.  相似文献   

18.
The autoimmune blistering skin diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are mainly caused by autoantibodies against desmosomal cadherins. In this study, we provide evidence that PV-immunoglobulin G (IgG) and PF-IgG induce skin blistering by interference with Rho A signaling. In vitro, pemphigus IgG caused typical hallmarks of pemphigus pathogenesis such as epidermal blistering in human skin, cell dissociation, and loss of desmoglein 1 (Dsg 1)-mediated binding probed by laser tweezers. These changes were accompanied by interference with Rho A activation and reduction of Rho A activity. Pemphigus IgG-triggered keratinocyte dissociation and Rho A inactivation were p38 mitogen-activated protein kinase dependent. Specific activation of Rho A by cytotoxic necrotizing factor-y abolished all pemphigus-triggered effects, including keratin retraction and release of Dsg 3 from the cytoskeleton. These data demonstrate that Rho A is involved in the regulation of desmosomal adhesion, at least in part by maintaining the cytoskeletal anchorage of desmosomal proteins. This may open the possibility of pemphigus treatment with the epidermal application of Rho A agonists.  相似文献   

19.
20.
Regulation of desmosome assembly and adhesion   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号