首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decorin is a small leucine-rich proteoglycan that plays a role in control of cell proliferation, cell migration, collagen fibrillogenesis and modulation of the activity of TGF-beta. In the present study, we investigated the effects of decorin on the production of metalloproteinases (MMP-1, -2, -3, -9 and -13), tissue inhibitors of metalloproteinases (TIMP-1, -2) and cytokines (TGF-beta, IL-1beta, IL-4 and TNF-alpha). Decorin was overexpressed in cultured human gingival fibroblasts using adenovirus-mediated gene transfer. Decorin infection resulted in decreased protein levels of MMP-1 and MMP-3 whereas MMP-2 and TIMP-2 secretion was increased. MMP-9, MMP-13 and TIMP-1 were not affected by decorin infection. Cytokine measurements by ELISA showed that decorin overexpression reduced TGF-beta and IL-1beta. In contrast, IL-4 and TNF-alpha levels were markedly increased in decorin-infected cells. These results suggest that decorin could modulate the expression of certain metalloproteinases and their inhibitors, as well as the production of cytokines. Altogether, our data suggest that decorin might play a pivotal role in tissue remodeling by acting on the balance between extracellular matrix synthesis and degradation.  相似文献   

2.
We have reported that Sho-saiko-to (TJ-9) prevents liver fibrosis in vivo. To gain further insights into the effect of TJ-9, the matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) balance was examined. Hepatic stellate cells (HSCs) were isolated from male Wistar rats and cultured with TJ-9 (0-1000 microg/ml) on uncoated plastic dishes for 4 days. To elucidate the effects on the MMPs/TIMPs balance by TJ-9, quantitative analysis of type IV collagen-degrading activity, gelatin zymography and reverse zymography were carried out. Northern blot analysis was performed to determine the expression of MMP-2, 13 and TIMP-1 mRNAs. TJ-9 treatment resulted in dose-dependent upregulation of MMP-2, 13 mRNA and downregulation of TIMP-1 mRNA up to 500 microg/ml. Gelatin zymography, reverse zymography and quantitative analysis of type IV collagen-degrading activity confirmed that TJ-9 increased MMP-2 activity and prevented TIMP-1, 2 activities in a dose-dependent manner. SB203580 diminished the reduction of mRNA as well as the activity of TIMP-1 by TJ-9 and induction of mRNA as well as the activity of MMP-2. These results show that TJ-9 increased MMP-2, 13 activity with reduced TIMP-1, 2 activities on HSCs possibly via P38 pathway.  相似文献   

3.
Fujisaki K  Tanabe N  Suzuki N  Mitsui N  Oka H  Ito K  Maeno M 《Life sciences》2006,78(17):1975-1982
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.  相似文献   

4.
Transformed human fibroblasts secrete two structurally and functionally related inhibitors of matrix metalloproteinases, tissue inhibitor of metalloproteinases (TIMP) 1 and 2. In assays measuring the relative inhibitory capability of TIMP-1 and TIMP-2 against autoactivated 72-kDa gelatinase, which consists of two major active peptides and several inactive fragments, TIMP-2 was more effective than TIMP-1. The isolated 42.5-kDa active fragment that formed as a result of the autoactivation of 72-kDa gelatinase showed the greatest preference for TIMP-2; at half-maximal inhibition, TIMP-2 was greater than 10-fold more effective than TIMP-1. TIMP-2 was also greater than 2-fold more effective than TIMP-1 at inhibiting 72-kDa gelatinase-TIMP-2 complexes activated with 4-aminophenylmercuric acetate, and greater than 7-fold more effective than TIMP-1 at inhibiting 92-kDa gelatinase activated with 4-aminophenylmercuric acetate. Furthermore, these active gelatinases preferentially bound 125I-TIMP-2 when incubated with equal amounts of radiolabeled TIMP-1 and TIMP-2. The ratios of 125I-TIMP-2/125I-TIMP-1 binding to 92-kDa gelatinase, autoactivated 72-kDa gelatinase, and 42.5-kDa fragment were 4.4, 10, and 33, respectively. On the other hand, interstitial collagenase was inhibited by TIMP-1 greater than 2-fold more effectively than TIMP-2 in assays measuring cleavage of loose collagen fibrils.  相似文献   

5.
The levels of metalloproteinases (MMP-2,-9), their tissue inhibitors (TIMP-1,-2) and extracellular matrix metalloproteinase inducer (EMMPRIN) were studied in tumor tissue and blood serum from patients with head and neck squamous cell carcinoma. Immunohistochemical investigation showed much higher expression of MMP-9 and TIMP-1 in tumor tissue compared with MMP-2 and TIMP-2. There was different distribution of the investigated parameters (except TIMP-1) in cancer cells and stroma. Accumulation of MMP-2, MMP-9, and TIMP-2 was found mainly in cell elements (fibrocytes, leukocytes, etc.) and in stromal extracellular space. Expression of EMMPRIN was significantly higher in tumor cells than in stromal cells. It is possible that carcinoma cells express EMMPRIN, which may increase MMP production by surrounding cells. There was significant decrease of TIMP-1 expression in carcinoma cells with N1 grade of metastasis than in tumors without metastasis. The level of TIMP-1 in blood serum from patients with tumor metastases to regional lymph nodes was lower than in serum from patients without metastases. Thus, MMP-9 and TIMP-1 play an important role in the development of head and neck squamous cell carcinoma and the TIMP-1 level in blood serum and cancer tissues is linked to the first grade of regional lymph node metastasis.  相似文献   

6.
We have identified the metalloproteinase inhibitor TIMP-2 as a secreted product of human alveolar macrophages. In contrast to human fibroblasts, TIMP-2 was released from macrophages free of any apparent complexed metalloproteinases. Also in marked distinction to fibroblasts, TIMP-2 secretion from mononuclear phagocytes was subject to modulation by a variety of agents. TIMP-2 was synthesized by macrophages placed in culture under basal conditions in amounts approximately 30% of those secreted by fibroblasts on a per cell basis. The additions of lipopolysaccharide, denatured type I collagen, and zymosan to culture medium each resulted in a dose-dependent and profound decrease in macrophage TIMP-2 protein production and steady-state mRNA levels. In contrast, all of these agents markedly enhanced the biosynthesis of macrophage interstitial collagenase and TIMP-1 as assessed by analysis of identical cell and conditioned media samples. In human fibroblasts, TIMP-2 biosynthesis was unaffected by interleukin-1, tumor necrosis factor-alpha, platelet-derived growth factor, and phorbol ester despite the massive collagenase stimulation induced by each of these agents. We conclude that TIMP-2 is a potentially important mononuclear phagocyte product whose biosynthesis is regulated in a distinct and completely opposite manner to that of collagenase and TIMP-1.  相似文献   

7.
Tissue inhibitors of metalloproteinases (TIMPs) may regulate extracellular matrix turnover and cellular functions by modulating matrix metalloproteinase (MMP) activity and cell proliferation and apoptosis. To investigate the locations and functions of TIMP-4 in human breast cancer, a highly specific polyclonal anti-TIMP-4 peptide antibody (pAb-T4-S61) was developed. The potency and specificity of the purified IgG were characterized by an enzyme-linked immunosorbent assay, immunoblot, and immunohistochemistry. The optimal IgG concentration range was 0.1-10 microg/ml. pAb-T4-S61 did not cross-react with TIMP-1 and TIMP-2 and should not react with TIMP-3 according to the sequence analysis. Parental MDA-MB-435 breast cancer cells were TIMP-4 negative and a TIMP-4 transfected clone, TIMP-4-435-12, produced TIMP-4. Membrane type-1 MMP was detected although TIMP-2 was not found in these cells. Interestingly, the TIMP-4 protein was detected by immunohistochemical staining in infiltrating breast carcinoma cells in tumor tissues. Thus, pAb-T4-S61 is a useful tool to investigate expression patterns and functions of TIMP-4 in cancers.  相似文献   

8.
Dupuytren's contracture is a fibroproliferative disorder characterized by progressive deposition of mature collagen fibers. In other fibrotic diseases affecting organs such as the liver, lung, heart, and skin, matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), play an important role. In this study, serum concentrations of MMP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2 were determined in 22 patients (five women and 17 men; average age, 67 +/- 11 years) with Dupuytren's disease using an enzyme-linked immunosorbent assay. Tissue samples were obtained for standard histological and immunohistochemical analyses. Sera and samples of palmar fascia from 20 patients (13 women and seven men; average age, 60 +/- 15 years) who had undergone hand surgery for carpal tunnel syndrome were used as the control group. Statistical analysis was performed using the Mann-Whitney test. Patients with Dupuytren's contracture presented with a TIMP-1 concentration of 437 +/- 160 ng/ml, a significantly higher TIMP-1 concentration than that seen in the control patients, who had a concentration of 321 +/- 70 ng/ml (p < 0.05). Patients with a proliferative active disease (n = 14) had a significantly higher TIMP-1 concentration (525 +/- 136 ng/ml) than patients (n = 8) with a contracture in the late involutional and residual phase (286 +/- 41 ng/ml; p < 0.05). There were no significant differences in the TIMP-2, MMP-1, MMP-2, and MMP-9 serum concentrations between patients with palmar fibromatosis and the control group. Patients with Dupuytren's disease had a significantly lower MMP-to-TIMP ratio (1.1 +/- 0.3; p < 0.05) than the control group (1.5 +/- 0.35). Patients with an active palmar fibromatosis presented a significantly (p < 0.05) reduced ratio (1 +/- 0.2) compared with those in later phases (1.4 +/- 0.3). TIMP-1 and TIMP-2 could be detected in tissue of patients with Dupuytren's contracture, with an accumulation in proliferative areas. MMPs could be detected locally in Dupuytren's tissue in a few patients, with less positive staining than for TIMPs. In the control group, there was just little or no staining for TIMPs and MMPs. The data indicate that the physiological balance between MMPs and their natural inhibitors is disturbed in patients with a proliferative active Dupuytren's disease. The decrease in the systemic MMP-to-TIMP ratio can cause increased synthesis and deposition of collagen, leading to palmar fibromatosis.  相似文献   

9.
Tissue inhibitors of metalloproteinases (TIMPs) inhibit the extracellular matrix (ECM) metalloproteinases (MMPs). To determine the source of TIMPs in synovial fluids of patients with osteoarthritis (OA), the ability of chondrocytes to express TIMP-2 and its regulation by agents found in inflammed joints was investigated. The constitutive TIMP-2 mRNA expression was demonstrated in chondrocytes from normal bovine, human OA and normal cartilage. The cross-hybridization of human and bovine TIMP-2 suggested its evolutionary conservation. Serum, IL-1, IL-6 and TGF-β were unable to augment considerably the basal expression of TIMP-2 mRNA. TIMP-1 RNA expression in chondrocytes from human OA cartilage was elevated compared to non-OA chondrocytes, while TIMP-2 mRNA levels were similar in both. IL-1β, IL-6 and TGF-β did not affect TIMP-2 expression but TGF-β induced TIMP-1 mRNA in human OA chondrocytes. TIMP-2 and TIMP-1 are therefore differentially regulated in chondrocytes and the basal TIMP-2 levels may be needed for the cartilage ECM integrity. © 1996 Wiley-Liss, Inc.  相似文献   

10.
During lung injury, fibroblasts migrate into the alveolar spaces where they can be exposed to pulmonary surfactant. We examined the effects of Survanta and surfactant protein A (SP-A) on fibroblast growth and apoptosis and on type I collagen, collagenase-1, and tissue inhibitor of metalloproteinase (TIMP)-1 expression. Lung fibroblasts were treated with 100, 500, and 1,000 microg/ml of Survanta; 10, 50, and 100 microg/ml of SP-A; and 500 microg/ml of Survanta plus 50 microg/ml of SP-A. Growth rate was evaluated by a formazan-based chromogenic assay, apoptosis was evaluated by DNA end labeling and ELISA, and collagen, collagenase-1, and TIMP-1 were evaluated by Northern blotting. Survanta provoked fibroblast apoptosis, induced collagenase-1 expression, and decreased type I collagen affecting mRNA stability approximately 10-fold as assessed with the use of actinomycin D. Collagen synthesis and collagenase activity paralleled the gene expression results. SP-A increased collagen expression approximately 2-fold and had no effect on collagenase-1, TIMP-1, or growth rate. When fibroblasts were exposed to a combination of Survanta plus SP-A, the effects of Survanta were partially reversed. These findings suggest that surfactant lipids may protect against intraluminal fibrogenesis by inducing fibroblast apoptosis and decreasing collagen accumulation.  相似文献   

11.
Complex role of matrix metalloproteinases in angiogenesis   总被引:49,自引:0,他引:49  
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.  相似文献   

12.
The oxidative mechanism whereby heparin may interact with various proteins was investigated in detail in this work by addressing the role of doses of heparin on the nature and effects of its binding to bovine trypsin, taken as reference protein. Unfractionated heparin was used at concentrations ranging from 6 to 400 microg/ml with a fixed trypsin concentration (250 microg/ml). At concentrations of up to 60 microg/ml, equivalent to trypsin/heparin molar ratios of between 30 and 3, increasing inhibition of amidolytic activity and radical-dependent peptide bond cleavage of the enzyme was observed, with the appearance in the electrophoretic pattern of new bands of trypsin fragments to which heparin was demonstrated to be bound specifically. Structural modifications were also revealed by increases in fluorescence emission spectra. On the whole, however, the alterations induced by these heparin concentrations only involved a limited number of trypsin molecules. At concentrations from 120 to 400 microg/ml (equivalent trypsin/heparin molar ratios of 1.5-0.46), heparin binding to trypsin appeared to cause more profound and generalized alterations of enzyme structure and function, with dose-dependent quenching of fluorescence emission and almost complete loss of amidolytic activity, although evidence of radical production was lacking. Collectively, the results stress the crucial role of heparin dose on both the nature and effects of its binding to trypsin. The change in heparin effects which reflects distinct underlying molecular mechanisms occurs dramatically at a critical concentration threshold. While a specific, radical-generating mechanism operates at low concentrations, less specific ionic linkages, apparently independent of radical production, best explain the effects of high heparin concentrations.  相似文献   

13.
Two protein inhibitors of metalloproteinases (TIMP) were isolated from medium conditioned by the clonal rat osteosarcoma line UMR 106-01. Initial purification of both a 30-kDa inhibitor and a 20-kDa inhibitor was accomplished using heparin-Sepharose chromatography with dextran sulfate elution followed by DEAE-Sepharose and CM-Sepharose chromatography. Purification of the 20-kDa inhibitor to homogeneity was completed with reverse-phase high-performance liquid chromatography. The 20-kDa inhibitor was identified as rat TIMP-2. The 30-kDa inhibitor, although not purified to homogeneity, was identified as rat TIMP-1. Amino terminal amino acid sequence analysis of the 30-kDa inhibitor demonstrated 86% identity to human TIMP-1 for the first 22 amino acids while the sequence of the 20-kDa inhibitor was identical to that of human TIMP-2 for the first 22 residues. Treatment with peptide:N-glycosidase F indicated that the 30-kDa rat inhibitor is glycosylated while the 20-kDa inhibitor is apparently unglycosylated. Inhibition of both rat and human interstitial collagenase by rat TIMP-2 was stoichiometric, with a 1:1 molar ratio required for complete inhibition. Exposure of UMR 106-01 cells to 10(-7) M parathyroid hormone resulted in approximately a 40% increase in total inhibitor production over basal levels.  相似文献   

14.
Interleukin-1 (IL-1) plays key roles in altering cartilage matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). In the present study, we examined the effect of IL-1beta on cell proliferation, alkaline phosphatase (ALPase) activity, and the expression of MMPs, and TIMPs in chondrocytes derived from normal human femoral cartilage. The cells were cultured in Dulbecco's modified Eagle's medium containing 15% fetal bovine serum and 0, 1, 10, or 100 U/ml of IL-1beta for up to 28 days. The level of expression of MMPs and TIMPs was estimated by determining mRNA levels using real-time PCR and by determining protein levels using an enzyme-linked immunosorbent assay. Cell proliferation decreased in the presence of IL-1beta after day 21 of culture. ALPase activity decreased significantly in the presence of IL-1beta after day 10 of culture. The expression of MMP-1, -2, and -3 increased markedly in the presence of IL-1beta after day 21 of culture. MMP-13 expression increased markedly in the presence of IL-1beta on day 1 of culture, but decreased markedly after day 7. The expression of TIMP-1 increased significantly after day 14 of culture. The expression of TIMP-2 decreased significantly on day 1, but increased significantly from day 3 to day 14 of culture. These results suggest that IL-1beta may stimulate cartilage matrix turnover by increasing mainly MMP-13 production by the cells.  相似文献   

15.
Prostaglandin F(2alpha) (PGF(2alpha)) typically initiates a cascade of events that leads to the functional and structural demise of the corpus luteum. A sheep model was used in which a 1-h, systemic infusion of PGF(2alpha) (20 microg/min) is given at midcycle. Such an infusion mimics the onset of spontaneous luteolysis by causing a transient decrease in peripheral plasma progesterone, which reaches a nadir ( approximately 60% of controls) at 8 h but returns to control levels by 16-24 h. We investigated whether PGF(2alpha) also influenced the endogenous protein levels of tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2, and matrix metalloproteinases, MMP-2 and MMP-9, all of which have been implicated in remodeling of the extracellular matrix (ECM). Corpora lutea (Day 11) were collected at 0 h and at 1, 8, 16, and 24 h post-PGF(2alpha) infusion (n = 3 sheep at each time). Immunoblot analysis revealed an immediate and precipitous decline in TIMP-1 (30 kDa) and TIMP-2 (19 kDa) protein levels (60% and 90%, respectively; P < 0.05) at the 1-h time point and remained depressed at 8 h (P < 0.05). Gelatin zymography and other procedures identified three MMPs (85, 70, and 64 kDa), which were shown to be the latent form of MMP-9 and the active and latent forms of MMP-2, respectively. In contrast to the rapid decrease in TIMP-1 and -2 levels, an increase in MMP-2 activity (165% of controls, P < 0.05) occurred at 8 h, which corresponded to the nadir in plasma progesterone. These early changes in TIMPs and MMPs indicate that alterations in the structure of the ECM by PGF(2alpha) may play a hitherto unsuspected role in the subsequent process of functional luteolysis.  相似文献   

16.
The balance between matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), plays a critical role in cardiac remodeling. Although a number of studies have characterized the pathophysiological role of MMPs in the heart, very little is known with respect to the role of TIMPs in the heart. To delineate the role of TIMPs in the heart we examined the effects of adenovirus-mediated overexpression of TIMP-1, -2, -3, and -4 in cardiac fibroblasts. Infection of cardiac fibroblasts with adenoviral constructs containing human recombinant TIMP (AdTIMP-1, -2, -3, and -4) provoked a significant (P < 0.0001) 1.3-fold in increase in bromodeoxyuridine (BrdU) incorporation. Similarly, treatment of cardiac fibroblasts with AdTIMP-1-, -2-, -3-, and -4-conditioned medium led to a 1.2-fold increase in BrdU incorporation (P < 0.0001) that was abolished by pretreatment with anti-TIMP-1, -2, -3, and -4 antibodies. The effects of TIMPs were not mimicked by treating the cells with RS-130830, a broad-based MMP inhibitor, suggesting that the effects of TIMPs were independent of their ability to inhibit MMPs. Infection with AdTIMP-1, -2, -3, and -4 led to a significant increase in alpha-smooth muscle actin staining, consistent with TIMP-induced phenotypic differentiation into myofibroblasts. Finally, infection with AdTIMP-2 resulted in a significant increase in collagen synthesis, whereas infection with AdTIMP-3 resulted in a significant increase in fibroblast apoptosis. TIMPs exert overlapping as well as diverse effects on isolated cardiac fibroblasts. The observation that TIMPs stimulate fibroblast proliferation as well as phenotypic differentiation into myofibroblasts suggests that TIMPs may play an important role in tissue repair in the heart that extends beyond their traditional role as MMP inhibitors.  相似文献   

17.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

18.
19.
EA.hy 926 cells, a derivative of human umbilical vein endothelial cells, in the presence of fibroblasts show the phenomena of angiogenesis, express the proteoglycan decorin and escape apoptosis, when they are maintained in collagen lattices, while fibroblast-free cultures do not show these changes. Virus-mediated decorin expression can substitute for the presence of fibroblasts. Since the expression of matrix metalloproteinases (MMPs) is an essential step in the formation of capillaries, several MMPs and tissue inhibitors of metalloproteinases (TIMPs) were investigated. MMP-1, MMP-2, MMP-9, and the cell-associated MMP-14 were augmented on the protein level in the presence of fibroblasts. No effect was seen with respect to MMP-3, TIMP-1, and TIMP-2. Semiquantitative RT-PCRs of endothelial cells in co-culture revealed a 7-, 19-, and 11-fold increase for mRNAs of MMP-1, MMP-2, and MMP-14 after six days, respectively. Virus-mediated decorin expression also was accompanied by an up-regulation of these MMPs. The expression of MMP-1 mRNAs increased 5-fold after 2 days and gradually declined thereafter. In contrast, MMP-2 and MMP-14 showed a 7-fold and a 14-fold increase on day two which returned to basal levels within 24 h, indicating that the expression of MMP-1 is differentially regulated from MMP-2 and MMP-14. In spite of the upregulation of the proteases, an enhanced degradation of decorin was not observed. These results indicate that the expression of decorin is a sufficient signal in EA.hy 926 cells for a finely tuned induction of selected MMPs which are involved in angiogenesis whereas the up-regulation of MMPs does not lead to the degradation of the responsible proteoglycan.  相似文献   

20.
Nakoman C  Resmi H  Ay O  Acikel U  Atabey N  Güner G 《Biochimie》2005,87(3-4):343-351
Matrix metalloproteinases (MMP's) and tissue inhibitors of metalloproteinases (TIMP's) possess a preponderant role in the metabolism of the major extracellular matrix protein, collagen, and are thought to be important in the mechanism of tumor invasion. Lung cancer occupies the first position in mortality and the second position in incidence, among all cancers. In the present investigation, we studied the effect of basic fibroblast growth factor (bFGF) on collagen, matrix metalloproteinase-2 (MMP-2), and tissue metalloproteinase inhibitor-2 (TIMP-2) levels in normal and carcinoma lung tissue fibroblast cultures. MMP-2 was selected because of its high specificity in the degradation of type IV collagen, major component of the basal membrane. The effect of bFGF on MMP-2, TIMP-2, total collagen, and type I collagen levels of normal and carcinoma lung fibroblast cultures was investigated at 0, 10, and 100 ng/ml. Statistical analysis was carried out using the Mann-Whitney-U test and possible correlations were searched using the Spearman correlation analysis method. MMP-2, TIMP-2, total collagen, and type-1 collagen levels based on cell counts (10(3) cells) showed no statistically significant differences between the carcinoma and normal fibroblast cultures. However, positive correlations were found between MMP-2 and TIMP-2 in normal (P = 0.016) and carcinoma (P = 0.001) tissue fibroblast cultures. Positive correlations were also found between total collagen and TIMP-2 levels in normal and carcinoma tissue fibroblast cultures (P = 0.002 and P = 0.032). Total collagen and TIMP-2 levels also showed positive and strong correlations in all cultures except in 100 ng/ml bFGF concentrations. In addition, type I collagen and MMP-2 levels showed positive significant correlations only in normal and carcinoma control cultures, while type I collagen and TIMP-2 levels showed positive correlations in all cultures except carcinoma fibroblasts at 100 ng/ml bFGF. It may be concluded that bFGF does not affect MMP-2, TIMP-2, total collagen, and type-1 collagen levels in fibroblast cultures grown from human carcinoma and normal lung tissues. However, bFGF was noted, in vitro, to disturb the equilibrium which normally exists between the four parameters, both in normal and carcinoma tissue fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号