首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strawberry genus, Fragaria (Rosaceae), has a base chromosome number of x = 7. Cultivated strawberries (F. ×ananassa nothosubsp. ananassa) are octoploid (2n = 8x = 56) and first hybridized from F. chiloensis subsp. chiloensis forma chiloensis × F. virginiana subsp. virginiana. Europe has no known native octoploid species, and only one Asian octoploid species has been reported: F. iturupensis, from Iturup Island. Our objective was to examine the chromosomes of F. iturupensis. Ploidy levels of wild strawberry species, include diploid (2n = 2x = 14), tetraploid (2n = 4x = 28), pentaploid (2n = 5x = 35), hexaploid (2n = 6x = 42), octoploid (2n = 8x = 56), and nonaploid (2n = 9x = 63). Artificial triploid (2n = 3x = 21), tetraploid, pentaploid, octoploid, decaploid (2n = 10x = 70), 16-ploid, and 32-ploid plants have been constructed and cultivated. Surprisingly, chromosome counts and flow cytometry revealed that F. iturupensis includes natural decaploid genotypes with 2n = 10x = 70 chromosomes. This report is the first of a naturally occurring decaploid strawberry species. Further research on F. iturupensis and exploration on northern Pacific islands is warranted to ascertain the phylogeny and development of American octoploid species.  相似文献   

2.
Spigler RB  Lewers KS  Main DS  Ashman TL 《Heredity》2008,101(6):507-517
The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.  相似文献   

3.
The rise of sexual dimorphism is thought to coincide with the evolution of sex chromosomes. Yet because sex chromosomes in many species are ancient, we lack empirical evidence of the earliest stages of this transition. We use QTL analysis to examine the genetic architecture of sexual dimorphism in subdioecious octoploid Fragaria virginiana. We demonstrate that the region housing the male-function locus controls the majority of quantitative variation in proportion fruit set, confirming the existence of a proto-sex chromosome, and houses major QTL for eight additional sexually dimorphic traits, consistent with theory and data from animals and plants with more advanced sex chromosomes. We also detected autosomal QTL, demonstrating contributions to phenotypic variation in sexually dimorphic traits outside the sex-determining region. Moreover, for proportion seed set we found significant epistatic interactions between autosomal QTL and the male-function locus, indicating sex-limited QTL. We identified linked QTL reflecting trade-offs between male and female traits expected from theory and positive integration of male traits. These findings indicate the potential for the evolution of greater sexual dimorphism. Involvement of linkage groups homeologous to the proto-sex chromosome in these correlations reflects the polyploid origin of F. virginiana and raises the possibility that chromosomes in this homeologous group were predisposed to become the sex chromosome.  相似文献   

4.
Relationships among 37 North American octoploid strawberry populations were studied by evaluating 44 morphological traits and 36 randomly amplified polymorphic DNA (RAPD) markers. Both data sets were analyzed by principal components analysis and UPGMA clustering based on genetic distances. Morphological data defined five groups: east of the Missouri River (Fragaria virginiana ssp. virginiana), the Black Hills (F. virginiana ssp. virginiana and ssp. glauca), from the eastern Cascades to the eastern Rocky Mountains (F. virginiana ssp. glauca), the western Cascades and Olympic Peninsula (F. virginiana ssp. platypetala), and the Pacific coast (F. chiloensis). Canonical discriminant analysis clearly discriminated populations into these provenances, suggesting that these groups are morphologically distinct. RAPD data defined three groups, one with F. virginiana ssp. virginiana and ssp. glauca, another with F. chiloensis, and a third with F. virginiana ssp. platypetala. The latter was more similar to F. chiloensis than F. virginiana, suggesting it is likely a subspecies of F. chiloensis. All octoploid North American strawberries have likely derived from a common ancestor and have differentiated into F. chiloensis and F. virginiana by adapting to moister and drier environments, respectively.  相似文献   

5.
6.
Zhou Y  Gu H  Dorn S 《Heredity》2006,96(6):487-492
The parasitoid Cotesia glomerata usually produces female-biased sex ratios in the field, which are presumably caused by inbreeding and local mate competition (LMC); yet, sibling mating increases the production of males, leading to the male-biased sex ratio of broods in the laboratory. Previous studies have suggested that the sex allocation strategy of C. glomerata is based on both partial LMC in males and inbreeding avoidance in females. The current study investigated the presence of single-locus complementary sex determination (sl-CSD) as a sex-determining mechanism in this species through inbreeding experiment, cytological examination and microsatellite analysis. Cytological examination detected diploid males in nine of 17 single pairs of sibling mating, thus in agreement with the proportion of matched matings predicted by the sl-CSD model. Sex ratio shifts in these matched sibling matings were consistent with the sl-CSD model with less viable diploid males. The haploid males have a single set of maternal chromosomes (n = 10), whereas diploid males possess a double set of chromosomes (2n = 20). Microsatellite analyses confirmed that diploid males produced from the matched matings inherited segregating genetic materials from both parents. Thus, this study provides the first solid evidence for the presence of sl-CSD as a sex-determining mechanism in the braconid genus Cotesia.  相似文献   

7.

Background  

In species with single locus complementary sex determination (sl-CSD), the sex of individuals depends on their genotype at one single locus with multiple alleles. Haploid individuals are always males. Diploid individuals are females when heterozygous, but males when homozygous at the sex-determining locus. Diploid males are typically unviable or effectively sterile, hence imposing a genetic load on populations. Diploid males are produced from matings of partners that share an allele at the sex-determining locus. The lower the allelic diversity at the sex-determining locus, the more diploid males are produced, ultimately impairing the growth of populations and jeopardizing their persistence. The gregarious endoparasitoid wasp Cotesia glomerata is one of only two known species with sl-CSD and fertile diploid males.  相似文献   

8.
Spinacia oleracea L. (spinach) is a dioecious species with both male and female plants having 2n = 2x = 12 chromosomes, consisting of two large metacentrics, two long subtelocentrics, two short subtelocentrics, two acrocentrics, and four submetacentrics. The location of 45S rDNA was investigated on metaphase chromosomes using fluorescence in situ hybridization (FISH). The numbers of 45S rDNA foci in diploid sets of chromosomes from females was six and from males was five. All the fluorescent foci lay in secondary constrictions and the satellites. Our results indicate that an XY-type sex chromosome system could be present in spinach where the Y chromosome lacks a 45S RNA focus.  相似文献   

9.
Summary In hymenopteran species, males are usually haploid and females diploid. However, in species that have complementary sex determination (CSD), diploid males arise when a female produces offspring that are homozygous at the sex-determining locus. Although diploid males are often sterile, in some species they have been shown to produce diploid sperm, thus producing triploid daughters if they mate successfully. Diploid males have been observed in very few species of social wasps, and we know of no published reports of triploid females. In this paper, we review the existing literature on diploid males and triploid females in the Hymenoptera, and report the observation of triploid females in three species of Polistes paper wasps. Although polyploid offspring may be produced parthenogenetically, the more likely scenario is that Polistes wasps have CSD and produce diploid males via homozygosity at the sex-determining locus. Therefore, female triploidy indicates that diploid males do exist in Polistes species where they are presumed to be absent, and are likely to be even more frequent among species that have experienced a genetic bottleneck. We conclude by cautioning against the assumption of a selective advantage to the production of early males, and by discussing the implications of male diploidy and female triploidy for measurement of sex ratio investment and assumptions of reproductive skew theory.Received 5 December 2003; revised 20 March 2004; accepted 19 April 2004.  相似文献   

10.
Sex is determined genetically in all birds, but the underlying mechanism remains unknown. All species have a ZZ/ZW sex chromosome system characterised by female (ZW) heterogamety, but the chromosomes themselves can be heteromorphic (in most birds) or homomorphic (in the flightless ratites). Sex in birds might be determined by the dosage of a Z-linked gene (two in males, one in females) or by a dominant ovary-determining gene carried on the W sex chromosome, or both. Sex chromosome aneuploidy has not been conclusively documented in birds to differentiate between these possibilities. By definition, the sex chromosomes of birds must carry one or more sex-determining genes. In this review of avian sex determination, we ask what, when and where? What is the nature of the avian sex determinant? When should it be expressed in the developing embryo, and where is it expressed? The last two questions arise due to evidence suggesting that sex-determining genes in birds might be operating prior to overt sexual differentiation of the gonads into testes or ovaries, and in tissues other than the urogenital system.  相似文献   

11.
Hermaphroditism is the normal mode of sex expression in diploid species of Fragaria (Rosaceae, 2n = 14, x = 7) with one known exception, gynodioecious F. vesca L. ssp. bracteata. The polyploid species of Fragaria are all trioecious. An extensive study involving appropriate hybridization, testcrossing, selling, and backcrossing revealed that the repression of sporangia and the inhibition of sporogenesis are controlled by a single gene (or a gene complex) with at least three alleles in the sporophytes of trioecious octoploid species (2n = 56, x = 7). A male suppressor (allele F) reduces microsporangia and represses microsporogenesis completely, but it allows normal development of the stigma, style, and ovary. A female suppressor (allele M), in the absence of modifier genes, inhibits megasporogenesis and drastically reduces the number of carpels and size of receptacles. The allele H, conferring perfect flowers at an early stage of flower organogenesis, acts as an inducer of microsporogenesis in females, but leaves both microand megasporangial development intact. At the sex locus, the F allele (femaleness) is dominant to H and M and the H allele (hermaphroditism) is dominant to M (maleness). Females are exclusively heterogametic (F/H or F/M), hermaphrodites may be homo- or heterogametic (H/H or H/M), and males are homogametic (M/M). The sex gene is expressed precisely in the genetic background of octoploid × diploid hybrids of Fragaria and their derivatives and in crosses with closely related hermaphroditic diploid Pontentilla glandulosa L. Gene dosage phenomena are absent. First generation progeny of colchi-decaploids (F/F, –/–) are exclusively female, but all generations thereafter segregate in a normal diploidized manner (1:1). Application of phytohormones alters sex expression to a limited extent.  相似文献   

12.
The genus Eigenmannia comprises several species groups that display a surprising variety of diploid chromosome numbers and sex-determining systems. In this study, hypotheses regarding phylogenetic relationships and karyotype evolution were investigated using a combination of molecular and cytogenetic methods. Phylogenetic relationships were analyzed for 11 cytotypes based on sequences from five mitochondrial DNA regions. Parsimony-based character mapping of sex chromosomes confirms previous suggestions of multiple origins of sex chromosomes. Molecular cytogenetic analyses involved chromosome painting using probes derived from whole sex chromosomes from two taxa that were hybridized to metaphases of their respective sister cytotypes. These analyses showed that a multiple XY system evolved recently (<7 mya) by fusion. Furthermore, one of the chromosomes that fused to form the neo-Y chromosome is fused independently to another chromosome in the sister cytotype. This may constitute an efficient post-mating barrier and might imply a direct function of sex chromosomes in the speciation processes in Eigenmannia. The other chromosomal sex-determination system investigated is shown to have differentiated by an accumulation of heterochromatin on the X chromosome. This has occurred in the past 0.6 my, and is the most recent chromosomal sex-determining system described to date. These results show that the evolution of sex-determining systems can proceed very rapidly.  相似文献   

13.
Trent C  Crosby C  Eavey J 《Heredity》2006,96(5):368-376
The primary sex-determining signal in the haplodiploid wasp Nasonia vitripennis is not known. In haplodiploid reproduction, unfertilized eggs typically develop into uniparental haploid males and fertilized eggs into biparental diploid females. Although this reproductive strategy is common to all Hymenoptera, sex-determination is not strictly specified by the number of genome copies inherited. Furthermore, primary sex-determining signals differ among haplodiploid species. In the honeybee, for example, the primary signal is the genotype at a single, polymorphic locus: diploid animals that are homozygous develop into males while heterozygotes develop into females. Sex determination in Nasonia cannot be explained by this mechanism. Various lines of evidence show that the inheritance of a paternal genome is required for female sexual development and suggest a genomic imprinting mechanism involving an imprinted gene, expressed only from a paternal copy, that triggers female sexual development. In this model, haploid or diploid uniparental embryos develop into males due to a maternal imprint that silences this locus. The genomic imprinting model predicts that a loss-of-function mutation in the paternal copy of the imprinted gene would result in male sexual development in a biparental diploid embryo. In support of this model, we have identified rare biparental diploid males in the F1 progeny of X-ray mutagenized haploid males. Although uniparental diploid male progeny of virgin triploid females have been previously described, this is the first report of biparental diploid males in Nasonia. Our work provides a new, independent line of evidence for the genomic imprinting model of Nasonia sex determination.  相似文献   

14.
Chromosomes of Eigenmannia sp. (7 males and 15 females) collected from the Tietê River in Botucatu (SP, Brazil) were examined from gill, kidney and testicular cells. The diploid chromosome number in males was 2n=31 and in females, 2n=32. In both sexes the number of chromosomal arms was 40. The difference in diploid number was due to the fusion of two acrocentrics. Mitotic and meiotic studies suggested that one of the fused acrocentrics was the Y chromosome. The sex-determining mechanism in Eigenmannia sp. could therefore be XX, AA in the female and X, \-YA A in the males. One of the males presented 2n=30 chromosomes due to the occurrence of another fusion of acrocentrics. C-banding analysis of the mitotic chromosomes revealed constitutive heterochromatin in the centromeric regions of all acrocentrics. However, small metacentrics were C-band negative. The YA chromosome is C-band negative except for a small amount of heterochromatin in the centromeric region. The nucleolar organizer region as identified by Ag-staining is present in the interstitial region of chromosome pair No. 10.  相似文献   

15.
Alleles of sexually antagonistic genes (i.e., genes with alleles affecting fitness in opposite directions in the two sexes) can avoid expression in the sex to which they are detrimental via two processes: they are subsumed into the nonrecombining, sex-determining portion of the sex chromosomes or they evolve sex-limited expression. The former is considered more likely and leads to Y-chromosome degeneration. We mapped quantitative trait loci of major effect for sexually dimorphic traits of Silene latifolia to the recombining portions of the sex chromosomes and found them to exhibit sex-specific expression, with the Y chromosome in males controlling a relatively larger proportion of genetic variance than the X in females and the average autosome. Both reproductive and ecophysiological traits map to the recombining region of the sex chromosomes. We argue that genetic correlations among traits maintain recombination and polymorphism for these genes because of balancing selection in males, whereas sex-limited expression represses detrimental alleles in females. Our data suggest that the Y chromosome of S. latifolia plays a major role in the control of key metabolic activities beyond reproductive functions.  相似文献   

16.
Although the hymenopteran sex-determining mechanism generally results in haploid males and diploid females, diploid males can be produced via homozygosity at the sex-determining locus. Diploid males have low fitness because they are effectively sterile or produce presumably sterile triploid offspring. Previously, triploid females were observed in three species of North American Polistes paper wasps, and this was interpreted as indirect evidence of diploid males. Here we report what is, to our knowledge, the first direct evidence: four of five early male-producing Polistes dominulus nests from three populations contained diploid males. Because haploid males were also found, however, the adaptive value of early males cannot be ignored. Using genetic and morphological data from triploid females, we also present evidence that both diploid males and triploid females remain undetected throughout the colony cycle. Consequently, diploid male production may result in a delayed fitness cost for two generations. This phenomenon is particularly relevant for introduced populations with few alleles at the sex-determining locus, but cannot be ignored in native populations without supporting genetic data. Future research using paper wasp populations to test theories of social evolution should explicitly consider the potential impacts of diploid males.  相似文献   

17.
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.  相似文献   

18.
Salinomys delicatus is considered a rare species due to its restricted and patchy distribution, poor records and low abundances. It is also the phyllotine with the lowest known diploid chromosome number (2n = 18), however its sex chromosome system has never been described. Here, we studied the chromosomes of six females and three males with bands G, C, DAPI/CMA3 and meiosis. In males, the chromosome number was 2n = 19, with one large metacentric X-chromosome and two medium-sized acrocentrics absent in females. The karyotype of females was the same as previously described (2n = 18, FN = 32), with X-chromosomes being metacentric and the largest elements of the complement. In males, the two acrocentrics and the large metacentric form a trivalent in meiotic prophase. This indicates that S. delicatus has XY1Y2 sex chromosomes, which is confirmed by G and DAPI bands. Constitutive heterochromatin (CH) is restricted to small pericentromeric blocks in all chromosomes. The X-chromosome shows the largest block of centromeric CH, which could favor the establishment of this X-autosome translocation. This sex chromosome system is rare in mammals and, compared with other phyllotine rodents, S. delicatus seems to have undergone a major chromosome restructuring during its karyotypic evolution.  相似文献   

19.
Although the sex-determining gene DMY has been identified on the Y chromosome in the medaka (Oryzias latipes), this gene is absent in most Oryzias species, suggesting that closely related species have different sex-determining genes. Here, we investigated the sex-determination mechanism in O. dancena, which does not possess the DMY gene. Since heteromorphic sex chromosomes have not been reported in this species, a progeny test of sex-reversed individuals produced by hormone treatment was performed. Sex-reversed males yielded all-female progeny, indicating that O. dancena has an XX/XY sex-determination system. To uncover the cryptic sex chromosomes, sex-linked DNA markers were screened using expressed sequence tags (ESTs) established in O. latipes. Linkage analysis of isolated sex-linked ESTs showed a conserved synteny between the sex chromosomes in O. dancena and an autosome in O. latipes. Fluorescence in situ hybridization (FISH) analysis of these markers confirmed that sex chromosomes of these species are not homologous. These findings strongly suggest an independent origin of sex chromosomes in O. dancena and O. latipes. Further analysis of the sex-determining region in O. dancena should provide crucial insights into the evolution of sex-determination mechanisms in vertebrates.  相似文献   

20.
The chromosome complements of the mosquitoes Aedes aegypti, Aedes mascarensis, and Aedes albopictus, belonging to the subgenus Stegomyia, gave a uniform response to the Q-, H-, and R-banding techniques. Of the three homomorphic chromosome pairs, only the shortest or sex pair (I) showed a consistent banding pattern. In the three species, a bright yellow intercalary band was present on one arm of both chromosomes of the sex pair after heat treatment and staining with acridine orange. The rest of the chromosome and the other two pairs fluoresced orange-red. The same intercalary region appeared completely dark with the fluorochromes quinacrine and Hoechst 33258, while the rest of the chromosomes fluoresced dull. The same banding pattern was present in males and females. Size variations of the Q- and H-negative and R-positive intercalary bands were observed within each species. The results are interpreted in terms of structural homology of the sex-determining chromosomes, which is retained within the subgenus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号