首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.  相似文献   

11.
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.  相似文献   

12.
13.
14.
15.
16.
We previously indicated that myeloid elf-1-like factor (MEF) but not elf-1, specifically activated lysozyme gene expression in epithelial cells. MEF is highly homologous at the nucleotide and amino acid level, with elf-1 especially in the ETS domain. Here, we report the functional analysis of the nuclear localization and transactivation properties of MEF. To investigate the intracellular localization of MEF, we transiently transfected MEF-green fluorescence protein (GFP) fusion protein expression vector into HeLa cells. A region spanning residues 177-291 is required for nuclear localization. We produced deletion mutants of MEF to determine the transactivation domain. The data showed that the N-terminal region, encompassing amino acids 1-52 is a potent transactivation domain. The C-terminal region spanning residues 477-663 can also mediate transactivation but not as strongly as the N-terminal region. The activity of the amino acid residues 1-52 was confirmed by experiments with fused constructs of MEF to the DNA binding-domain of the yeast GAL4 protein. These results, which determined the localization of the functional domains of MEF, will provide us with new clues to its transactivation mechanisms to regulate lysozyme gene expression in epithelial cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号