共查询到20条相似文献,搜索用时 8 毫秒
1.
Streshinskaya GM Shashkov AS Senchenkova SN Bueva OV Stupar OS Evtushenko LI 《Carbohydrate research》2007,342(3-4):659-664
The cell wall of a pathogenic strain Streptomyces sp. VKM Ac-2275 isolated from potato tubers infected by scab contains a teichoic acid related to poly(glycosylpolyol phosphate) with a repeating unit established by chemical and NMR spectroscopic methods. About 60% of l-rhamnose residues bear an O-acetyl group at O-2 and 20% of the internal glucose residues contain an additional phosphate at C-4. The polymer is built of 5-6 units. This structure is found in bacteria for the first time. The strain is phylogenetically closest to the scab-causing species Streptomyces scabiei and Streptomyces europaeiscabiei, but differs from both these species in morphological and physiological characters and does not produce thaxtomin A, the main phytotoxin produced by S. scabiei. 相似文献
2.
Shashkov AS Streshinskaya GM Kosmachevskaya LN Senchenkova SN Evtushenko LI Naumova IB 《Carbohydrate research》2003,338(19):2021-2024
The major cell wall polymer of Streptomyces sp. VKM Ac-2125, the causative agent of potato scab, is galactomannan with the repeating unit of the following structure: [carbohydrate structure in text] The polysaccharide with such a structure is found in the bacterial cell wall for the first time. The cell wall also contains small amount of a teichoic acid of the poly(glycerol phosphate) type and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid. 相似文献
3.
Shashkov AS Tul'skaya EM Evtushenko LI Gratchev AA Naumova IB 《Biochemistry. Biokhimii?a》2000,65(4):509-514
A teichoic acid from the cell walls of Nocardioides luteus VKM Ac-1246T, a validly described species of the Nocardioides genus, is a 1,5-poly(ribitol phosphate) completely substituted at C-4 by alpha-D-galactopyranosyl residues carrying a 4,6-pyruvate ketal group in R-configuration. The structure of the repeating unit of the polymer is as follows: [figure]. The chain consists of approximately 18 repeating units and six beta-D-galactofuranosyl residues linked in the oligomer by 1,6-glycosidic bonds. The oligomer probably terminates the growing end of the teichoic acid. The structure of the polymer was determined by chemical methods and NMR spectroscopy. This teichoic acid has not been described so far. 相似文献
4.
Natalia V Potekhina Alexander S Shashkov Lyudmila I Evtushenko Ekaterina Yu Gavrish Sofya N Senchenkova Andrey A Stomakhin Anatolii I Usov Irina B Naumova Erko Stackebrandt 《European journal of biochemistry》2003,270(22):4420-4425
The cell wall of Brevibacterium sp. VKM Ac-2118 isolated from a frozen (mean annual temperature -12 degrees C) late Pliocene layer, 1.8-3 Myr, Kolyma lowland, Russia, contains mannitol teichoic acid with a previously unknown structure. This is 1,6-poly(mannitol phosphate) with the majority of the mannitol residues bearing side phosphate groups at O-4(3). The structure of the polymer was established by chemical methods, NMR spectroscopy, and MALDI-TOF mass spectrometry. 相似文献
5.
A teichoic acid of Nocardioides albus VKM Ac-805T cell walls, a typical species of the genus Nocardioides, contains a poly(glycosylglycerol phosphate). The repeating unit of the polymer has the structure: [figure]. These units are in phosphodiester linkage at C-3 of glycerol and C-3 of beta-D-galactopyranose. beta-D-Galactopyranosyl residues are substituted at C-4 by beta-D-glucopyranose carrying a 4,6-pyruvate ketal group in S-configuration. The presence of pyruvic acid in the majority of repeating units increases the anionic properties of the polymer in comparison with most other common teichoic acids. This is the first report of the occurrence of a beta-D-galactofuranosyl residue in teichoic acids; it probably acts as a terminator of an extending chain of the polymer. The ratio of beta-D-galactopyranosyl to beta-D-galactofuranosyl units is 7:1. The polymer structure was determined by NMR spectroscopy. This type of teichoic acid structure has not been reported previously. 相似文献
6.
Potekhina NV Shashkov AS Evtushenko LI Senchenkova SN Naumova IB 《Carbohydrate research》2003,338(23):2745-2749
The cell wall of Brevibacterium permense VKM Ac-2280 contains two teichoic acids. The major polymer represents a 1,6-poly(mannitol phosphate) substituted wirh either L-rhamnose (approximately 70%, unit A) or (S)-acetal of pyruvic acid (approximately 30%, unit B) with the overall chain length approximately 10 mannitol phosphate units. [carbohydrate structure: see text] The other polymer is an unsubstituted 1,3-poly(glycerol phosphate). The structures of the polymers were established using chemical degradations and NMR spectroscopy. The data obtained may be helpful in determination of the species-specific status of newly isolated Brevibacterium strains. 相似文献
7.
Tul'skaya EM Senchenkova SN Evtushenko LI Shashkov AS Naumova IB 《Carbohydrate research》2005,340(6):1247-1251
The major cell wall polymer of Kineosporia aurantiaca VKM Ac-702T a representative of the suborder Frankineae, is a galactomannan with a repeating unit of the following structure: -->3)-beta-D-Galp-(1-->6)-beta-D-Manp-(1-->4)-beta-D-Manp-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-beta-D-Manp-(1--> that has not been reported so far. This was established using chemical degradation methods and NMR spectroscopy. The polysaccharide identified in the present study provides the second example of neutral galactomannans in actinomycete cell walls. The cell wall of K. aurantiaca VKM Ac-702T also contains a minor teichoic acid, viz., 1,3-poly(glycerol phosphate) partially substituted with alpha-glucosamine residues, only part of which are N-acetylated. 相似文献
8.
Tul'skaia EM Shashkov AS Senchenkova SN Akimov VN Bueva OV Stupar' OS Evtushenko LI 《Bioorganicheskaia khimiia》2007,33(2):269-276
The cell wall of Streptomyces sp. VKM An-2534, the causative agent of common scab in potato tubers, which does not synthesize thaxtomin and is phylogenetically close to phytopathogen Streptomyces setonii sp. ATCC 25497, contains two anionic carbohydrate-containing polymers. The major polymer is teichuronic acid, whose repeating unit is disaccharide --> 4)-beta-D-ManpNAc3NAcyA-(1 --> 3)-alpha-D-GalpNAc-(1-->, where Acy is a residue of acetic or L-glutamic acid. The polymer of such structure has been found in Gram-positive bacteria for the first time. The minor polymer is teichoic acid [1,5-poly(ribitol phosphate)], in which a part of the ribitol residues are glycosylated at C4 with beta-D-Glcp and, probably, with beta-D-GlcpNAc and some residues are O-acylated with Lys residues. The structures were proved by chemical and NMR spectroscopic methods. It is likely that the presence of acidic polysaccharides on the surface of the phytopathogenic streptomycete is necessary for its attachment to the host plant. 相似文献
9.
E M Tul'skaya K S Vylegzhanina G M Streshinskaya A S Shashkov I B Naumova 《Biochimica et biophysica acta》1991,1074(2):237-242
The cell wall of Streptomyces rutgersensis var. castelarense contains structurally different chains of 1,3-type glycerol teichoic acid. Part of the molecules consisting of 20-25 monomers, carry on every third glycerol phosphate unit (at C-2) alpha-glucosamine residues, only half of which are N-acetylated. There are chains with O-lysine groups, and free nonsubstituted ones. The chain structure has been ascertained by chemical analysis and 13C- and 1H-NMR spectroscopy. 相似文献
10.
Shashkov AS Streshinskaya GM Kozlova YI Senchenkova SN Arbatsky NP Kudryashova EB 《Carbohydrate research》2011,(9):131-1177
The cell wall of Bacillus subtilis VKM B-762 contains, along with 1,5-poly[4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)ribitol phosphate], a novel type of glycopolymer involving three types of inter-monomeric bonds in the repeating unit, viz., amide, glycosidic and phosphodiester:Such a structural pattern of natural glycopolymers has been hitherto unknown. This polymer represents a novel type of teichoic acids. 相似文献
11.
Kozlova YI Streshinskaya GM Shashkov AS Senchenkova SN Evtushenko LI 《Biochemistry. Biokhimii?a》2006,71(7):775-780
Anionic polymers of the cell surface of a thermophilic streptomycete were investigated. The cell wall of Streptomyces thermoviolaceus subsp. thermoviolaceus VKM Ac-1857(T) was found to contain polymers with different structure: teichoic acid--1,3-poly(glycerol phosphate), disaccharide-1-phosphate polymer with repeating unit -6)-alpha-Galp-(1-->6)-alpha-GlcpNAc-P-, and polysaccharide without phosphate with repeating unit -->6)-alpha-GalpNAc-(1-->3)-beta-GalpNAc-(1-->. Disaccharide-1-phosphate and polysaccharide without phosphate have not been described earlier in prokaryotic cell walls. 相似文献
12.
A polysaccharide containing the residues of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn) was found in the cell wall of the Brevibacterium casei strain AEI Ac-2114T . The polymer structure was elucidated by analyzing one-dimensional spectra of 1H and 13C NMR and bidimentional experiments 1H/13C-COSY, TOCSY, 1H/13C-gHSQC, and 1H/13C-gHMBC. The polymer is built up of the 2--> 4-linked Kdn residues substituted by beta-D-Glcp residues at 8- and 9-hydroxyls; such a polymer with disubstituted Kdn residues was found for the first time. A glycosylated teichoic acid of the 1,3-poly(glycerophosphate) type was also identified among other anionic polymers of cell wall. 相似文献
13.
N. V. Potekhina L. I. Evtushenko S. N. Senchenkova A. S. Shashkov 《Russian Journal of Bioorganic Chemistry》2007,33(1):66-72
A polysaccharide containing the residues of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn) was found in the cell wall of the Brevibacterium casei strain ACM Ac-2114T. The polymer structure was elucidated by analyzing one-dimensional spectra of 1H and 13C NMR and bidimentional experiments 1H/1H-COSY, TOCSY, 1H/13C-gHSQC, and 1H/13C-gHMBC. The polymer is built up of the 2 → 4-linked Kdn residues substituted by β-D-Glcp residues at 8- and 9-hydroxyls; such a polymer with disubstituted Kdn residues was found for the first time. A glycosylated teichoic acid of the 1,3-poly(glycerolphosphate) type was also identified among other anionic polymers of cell wall. 相似文献
14.
The phytohemagglutinin, concanavalin A (Con A), interacts specifically and reversibly with the polyglucosyl glycerol phosphate teichoic acid of Bacillus subtilis 168 cell walls. Advantage has been taken of this interaction to examine the organization of the surface teichoic acid at the ultrastructural level. Con A-treated whole cells and cell walls contain an irregular, fluffy layer 25 to 60 nm thick which is absent in untreated or alpha-methyl glucoside-treated preparations. This discontinuous layer is present only on the outer profile of Con-A-treated cell walls. The surface teichoic acid is proposed to be oriented perpendicular to the long axis of the cell. Fixation and embedment for electron microscopy result in condensation of this layer which then contributes to the stainable portion of the wall. Con A treatment binds adjacent teichoic acid molecules in their native configuration producing the irregular, fluffy layer visualized. 相似文献
15.
Anionic polymers of the cell wall of <Emphasis Type="Italic">Streptomyces</Emphasis> sp. VKM Ac-2534
E. M. Tul’skaya A. S. Shashkov S. N. Senchenkova V. N. Akimov O. V. Bueva O. S. Stupar L. I. Evtushenko 《Russian Journal of Bioorganic Chemistry》2007,33(2):251-257
The cell wall of Streptomyces sp. VKM Ac-2534, the causative agent of common scab in potato tubers, which does not synthesize thaxtomin and is phylogenetically close to phytopathogen Streptomyces setonii sp. ATCC 25497, contains two anionic carbohydrate-containing polymers. The major polymer is teichuronic acid, whose repeating unit is disaccharide → 4)-β-D-ManpNAc3NAcyA-(1 → 3)-α-D-GalpNAc-(1→, where Acy is a residue of acetic or L-glutamic acid. The polymer of such structure has been found in Gram-positive bacteria for the first time. The minor polymer is teichoic acid [1,5-poly(ribitol phosphate)], in which a part of the ribitol residues are glycosylated at C4 with β-D-Glcp and, probably, with β-D-GlcpNAc and some residues are O-acylated with Lys residues. The structures were proved by chemical and NMR spectroscopic methods. It is likely that the presence of acidic polysaccharides on the surface of the phytopathogenic streptomycete is necessary for its attachment to the host plant. 相似文献
16.
Characterization of a novel linkage unit between ribitol teichoic acid and peptidoglycan in Listeria monocytogenes cell walls 总被引:1,自引:0,他引:1
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc. 相似文献
17.
18.
Thermally injured cells of Staphylococcus aureus lack the ability to grow on tryptic soy agar containing 7.5% NaCl. This injury phenomenon was examined in three strains of S. aureus: MF-31; H (Str); and, isolated from H (Str), 52A5, a mutant which lacks teichoic acid in the cell wall. Temperatures for sublethal heat treatment were selected to produce maximum injury with minimum death for each strain. Examination of isolated cell walls showed that magnesium was lost from the wall during heating, and that the degree of cell injury was accentuated when magnesium ions were either removed from or made unavailable to the cell. S. aureus 52A5 was more heat sensitive than its parent strain. Cells containing higher levels of wall teichoic acid generally showed less injury than normal cells. Cells with the weaker cation-binding polymer, teichuronic acid, in the cell wall generally showed greater injury. These data suggest that cell wall teichoic acid of S. aureus aids in the survival of the cell by the maintenance of an accessible surface pool of magnesium. 相似文献