首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
Summary The r-determinant (r-det) of the R plasmid NR1-Basel is a 23 kb, IS1-flanked transposon, called Tn2671, which has been shown to transpose to the genome of bacteriophage P7. Among the derivatives of phage P7::r-det we found one which carried two copies of the r-det as inverted repeats and which also contained the P7 genome segment between them in inverted orientation. Its generation is best explained by assuming that the entire 23 kb Tn2671 transposon has undergone intramolecular replicative transposition.  相似文献   

2.
Summary The composite transposon Tn2672 is a derivative of the Tn3-related transposon Tn902 whose bla gene providing ampicillin resistance had been inactivated by the insertion of the IS1-flanked multiple drug resistance transposon Tn2671. Most ampicillin resistant revertants of Tn2672 are due to precise excision of Tn2671. However, a rare Bla+ revertant which still retains all the previously acquired drug resistance markers was isolated. On this revertant, the 5 part of the split bla gene on Tn2672 has converted to an intact, active bla gene, and the entire Tn902 is structurally restored. In contrast, the adjacent IS1b element belonging to Tn2671 has its terminal 142 base pairs deleted. Despite of this rearragement, the split 3 part of bla and its adjacent sequences have remained unchanged. Models are presented to explain the observed DNA rearrangements, and their similarity with gene conversion events is discussed.  相似文献   

3.
A new staphylococcal composite transposon, designated Tn5405,carrying the genesaphA-3andaadE,which encode resistance to aminoglycosides, was partially characterized. The transposon is 12 kb long and is flanked by inverted repeated sequences displaying the characteristic features of an insertion sequence, named IS1182.This insertion sequence is 1864 bp long and has 23/33-bp imperfect inverted repeats at its ends. One of the IS1182copies delimiting Tn5405contains a copy of IS1181flanked by 8-bp direct repeats. Tn5405was found in the chromosome of MRSA clinical isolate BM3121, within a Tn552-related transposon, Tn5404.Tn5404was previously characterized following its transposition onto a β-lactamase plasmid harbored by BM3121. Two forms of the recombinant β-lactamase-encoding plasmid generated by the inversion of Tn5405within Tn5404were detected. IS1182was not detected in the DNA of 4 of the 17 tested MRSA isolates containingaphA-3and resistant to streptomycin. Thus,aphA-3andaadEgenes are not disseminated only by Tn5405or related transposons delimited by IS1182.  相似文献   

4.
Summary We have performed a detailed analysis of intra-and intermolecular endproducts of transposition of the compound transposon Tn903 and we show that, in our system, the transposition activity is almost entirely driven by one of the flanking insertion sequences, IS903L. The relatively inactive state of IS903R can be conferred on IS903L by changing the orientation of the internal Tn region. IS903L mediates the formation of the majority of adjacent deletions, insertion/inversions nd cointegrates, all of which are representative of replicative transposition; only a very low level of conservative transposition can be observed. Our results are discussed in relation to those showing that Tn903 uses predominantly the conservative pathway.  相似文献   

5.
Summary To expand the application of molecular genetics to many different streptomycete species, we have been developing two potentially widely applicable methodologies: transposon mutagenesis and plasmid transduction. We constructed three transposons from theStreptomyces lividans insertion sequence IS493. Tn5096 and Tn5097 contain an apramycin resistance gene inserted in different orientations between the two open reading frames of IS493. These transposons transpose from different plasmids into many different sites in theStreptomyces griseofuscus chromosome and into its resident linear plasmids. Tn5099 contains a promoterlessxylE gene and a hygromycin-resistance gene inserted in IS493 close to one end. Tn5099 transposes inS. griseofuscus giving operon fusions in some cases that drive expression of thexylE gene product, catechol deoxygenase, giving yellow colonies in the presence of catechol. We have also developed plasmid vectors that can be transduced into many streptomycete species by bacteriophage FP43. We describe the characterization of FP43 and mapping of several bacteriophage functions. The region of cloned FP43 DNA essential for plasmid transduction includes the origin for headful packaging.  相似文献   

6.
Summary The bacterial transposon Tn5 inserts into dozens of sites in a gene, some of which are used preferentially (hotspots). Features of certain sites and precedents provided by several other transposons had suggested that sequences in target DNA corresponding to the ends of Tn5 or of its component IS50 elements might facilitate transposition to these sites. We tested this possibility using derivatives of plasmid pBR322 carrying IS50 I or O end sequences. Tn5 inserted frequently into an IS50 I end at the major hotspot in pBR322, but not into either an I end or an O end 230 by away from this hotspot. Adenine (dam) methylation at GATC sequences in the I end segment interferes with its use as the end of a transposon, but a dam mutation did not affect Tn5 insertion relative to an I end sequence in target DNA. These results support models in which the ability of Tn5 to find its preferred sites depends on several features of DNA sequence and conformation, and in which target selection is distinct from recognition of the element ends during transposition.  相似文献   

7.
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS50R. We were not able to reproduce this result with IS50R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS50R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.  相似文献   

8.
Summary The Escherichia coli enterotoxin STII gene is carried by Tn4521. The terminal repeats of Tn4521 are composed of IS2 sequences; however, neither repeat is a complete IS2. In order to determine how this seemingly defective transposon could transpose, mutations were generated within Tn4521 to determine the regions essential for transposition. The left terminal repeat region was found to be non-essential, but the right terminal repeat area was demonstrated to be crucial for transposition. Within the right terminal repeat area is an open reading frame (ORF), capable of encoding a 159 amino acid protein, which was shown by frameshift mutation analysis to be required for transposition. This protein may be the transposase of Tn4521. A pair of 11 bp repeat sequences flanking the ORF was also found to be important. The right 11 bp repeat is part of the left IS2 terminal sequence, and the left 11 bp repeat is located about 300 bp upstream from the right IS2 terminal sequence located within the right terminal repeat region. The results of this study suggest that Tn4521 is a functional transposon and that the sequence including this pair of 11 bp sequences plus the intervening sequence is a transposable element which may be responsible for Tn4521 transposition.  相似文献   

9.
It was shown that IS element ISPpy1 isolated earlier in the permafrost strain Psychrobacter maritimus MR29-12 has a high level of functional activity in cells of the heterologous host Escherichia coli K-12. ISPpy1 can be translocated in E. coli cells by itself and mobilize adjacent genes and can also form composite transposons flanked by two copies of this element. Apart from translocations between different plasmids, the composite ISPpy1-containing transposon Tn5080a is capable of translocation from the plasmid into the E. coli chromosome with high frequency and from the chromosome into the plasmid. Among products of Tn5080a transposition into plasmid R388, simple insertions were predominantly formed together with cointegrates. Upon mobilization of adjacent genes with the use of one ISPpy1 copy, only cointegrates arise.  相似文献   

10.
Summary A certain class of cointegrate plasmids was found to occur between a pSC101 derivative and a second plasmid pBV320 in E. coli F- cells. Cleavage analysis and DNA sequencing showed that the cointegrate plasmid contained direct repeats of an insertion sequence IS101 at the recombination junctions, indicating that formation of cointegrates was mediated by IS101, which is a natural constitutent of pSC101. These cointegrates were formed only in cells which contained the transposon gamma-delta, suggesting that the gamma-delta sequence, which provides transposase, is responsible for cointegration. Whenever the cointegrate plasmids were present in cells containing gamma-delta or its related transposon Tn3, the cointegrates were dissolved to give pBV320::IS101 due to recombination at duplicated IS101 sequences in the cointegrates, suggesting that both gamma-delta and Tn3, which provide a resolvase, are responsible for the resolution of the cointegrates. Comparison between the nucleotide sequence of IS101 and those of gamma-delta and Tn3 shows a high degree of homology in the regions that have been shown to be the binding sites of resolvases, as well as in the terminal inverted repeats. However, there is no homology between IS101 and the other element, gamma-delta or Tn3, in the internal resolution site, at which the resolution event may occur.Abbreviations Tc tetracycline - Cm chloramphenicol - Ap ampicillin - bp base pairs - kb kilobase pairs  相似文献   

11.
In its natural host, Bacillus thuringiensis, the insertion sequence IS231A is preferentially inserted into the terminal inverted repeats of the transposon Tn4430. Using a novel transposition assay, we demonstrate that the Tn4430 ends behave as insertion hot spots for IS231A in Escherichia coli. Sequence analysis reveals that IS231A insertion sites match the 5′-GGG(N)5CCC-3′consensus. However, this consensus is not the only determinant of IS231A insertion specificity. Although both Tn4430 ends have identical sequences, one is strongly preferred to the other and the orientation of insertion into this end is not random. We demonstrate that this preference is determined by the flanking regions of the site. These regions display a conserved periodic organization of their sequence which, by conferring anisotropic flexibility, would induce the DNA to bend in a roughly ‘S’ -shaped structure centred on the target consensus. DNA conformation analysis by polyacrylamide gel electrophoresis indeed shows that the preferred target site of IS231A is flanked by DNA segments curved in opposite directions. We present a model in which DNA bendability and curvature would contribute to the positioning of IS231A transposase on the target DNA.  相似文献   

12.
Tn5385 is a ca. 65-kb element integrated into the chromosomes of clinical Enterococcus faecalis strains CH19 and CH116. It confers resistance to erythromycin, gentamicin, mercuric chloride, streptomycin, tetracycline-minocycline, and penicillin via β-lactamase production. Tn5385 is a composite structure containing regions previously found in staphylococcal and enterococcal plasmids. Several transposons and transposon-like elements within Tn5385 have been identified, including conjugative transposon Tn5381, composite transposon Tn5384, and elements indistinguishable from staphylococcal transposons Tn4001 and Tn552. The divergent regions of Tn5385 are linked by a series of insertion sequence (IS) elements (IS256, IS257, and IS1216) of staphylococcal and enterococcal origin. The ends of Tn5385 consist of directly repeated copies of enterococcal IS1216. Within the chromosomes of strains CH19 and CH116, Tn5385 has interrupted an open reading frame with substantial homology to previously described alkyl hydrogen peroxide reductase genes. Segments of this open reading frame in both CH19 and CH116 have been deleted, but the amount of deleted DNA differs for the two insertions. Transfer of Tn5385 from both donors into E. faecalis recipients occurs at a low frequency. Two types of transconjugants have been identified. In one type, the target alkyl hydrogen peroxide reductase open reading frame has been deleted, and sequences flanking Tn5385 in the respective donors are carried over to the transconjugants. These data suggest that the mechanism of Tn5385 insertion into the recipient chromosome in these transconjugants was recombination across flanking regions in the donors and homologous sequences in the recipients. The second type of transconjugant appears to have resulted from excision of Tn5385 from the CH19 chromosome by recombination across the terminal IS1216 elements and insertion into the recipient chromosome by recombination across Tn5381 (within Tn5385) and a previously transferred Tn5381 copy in the recipient chromosome. These data confirm that Tn5385 is a composite structure with genetic material from diverse genera and suggest that it is a functional transposon. They also suggest that chromosomal recombination is a mechanism of genetic exchange in enterococci.  相似文献   

13.
Summary The plasmids R15 and RP4:: Tn1 form fused structures (85 Md and 92 Md cointegrates). The cointegrates do not resolve practically in recA Escherichia coli cells and have a mean life-time of more than 50 generations in a recA + background.The 85 Md cointegrates were generated at a frequency of 4×10–4 per R15 transconjugant during a mating between E. coli [R15; RP4:: Tn1] and E. coli [FColVBtrp:: Tn1755]. These plasmids carry two directly repeated copies of the mobile element IS8 at the junctions between R15 and RP4:: Tn1. The transposition of IS8 from RP4:: Tn1 to the R15 plasmid and the formation of hybrid molecules promoted by this process appear to be induced by the IS8 element of the Tn1755 structure during or after conjugal transfer of FColVBtrp:: Tn1755 into E. coli [R15; RP4:: Tn1] cells.The formation of the 92 Md cointegrates occurs at a frequency of 2×10–5. The fused molecules of R15 and RP4:: Tn1 carry two direct copies of an 8.65 Md R15 fragment at the junctions between these replicons. The fragment has specific features of a new transposon. This element designated Tn2353 determines resistance to Hg, Sm and Su and contains two sites for each BamHI, BglII and SalI and three sites for both EcoRI and PstI. The physical map and some other characteristics of Tn2353 are presented.Abbreviations Ap ampicillin - EtBr ethidium bromide - Km kanamycin - Md megadaltons - Sm streptomycin - Su sulfanilamide - Tc tetracycline - [] brackets indicate plasmid-carrier state  相似文献   

14.
The ability of the bacterial transposon Tn5 to undergo sequence inversion in Rec+ Escherichia coli cells as a result of recombination between its duplicated IS50 elements was examined using specially designed plasmid constructs. Surprisingly, recombination events in the IS50 elements that led to crossover and therefore Tn5 inversion could be detected at a frequency of only 10–5. This was approximately an order of magnitude lower than the frequency of IS50 recombination that led to conversion events (i.e. non-reciprocal recombination) without crossover, and at least two orders of magnitude lower than the frequency of intermolecular recombination between IS50 elements on two different plasmids. These rare conversion and inversion events in Tn5 appeared to be due to intramolecular recombination and not simply to multiple rounds of reciprocal crossing over, since the heterodimeric intermediates that would be generated during the latter process could be readily isolated but were shown to yield a completely different set of plasmid products upon resolution.  相似文献   

15.
An estimate of large-scale sequencing accuracy   总被引:2,自引:0,他引:2  
The accuracy of large-scale DNA sequencing is difficult to estimate without redundant effort. We have found that the mobile genetic element IS10, a component of the transposon Tn10, has contaminated a significant number of clones in the public databases, as a result of the use of the transposon in bacterial cloning strain construction. These contaminations need to be annotated as such. More positively, by defining the range of sequence variation in IS10, we have been able to determine that the rate of sequencing errors is very low, most likely surpassing the stated aim of one error or less in ten thousand bases.  相似文献   

16.
Nisin biosynthesis genes are encoded by a novel conjugative transposon   总被引:17,自引:0,他引:17  
Summary Genes for biosynthesis of the lactococcal peptide antibiotic nisin were shown to be encoded by a novel chromosomally located transposon Tn5301. The element is 70 kb in size and lacks inverted repeats at its termini. Although a copy of the insertion sequence IS904 is located near to one end, this did not appear to be involved in the transposition process. The integrated element is flanked by the directly repeated sequence 5-TTTTTG-3. Analysis of ten independent transconjugants revealed that Tn5301 integration is site-specific; two chromosomal targets were identified and shown to have some sequence homology. The element shares features with the Tn916 family of conjugative transposons and with Tn554 but is also exhibits some unique properties. Tn5301 is thus considered to be the prototype of a novel class of conjugative transposon.  相似文献   

17.
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS50R. We were not able to reproduce this result with IS50R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS50R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.  相似文献   

18.
The bacterial transposon Tn5 possesses a regulatory mechanism that allows it to move with higher efficiency when it is first introduced into a cell than after it is established. Tn5 is a composite transposable element containing inverted repeats of two nearly identical elements, IS 50R, which encodes the transposase protein necessary for Tn5 movement, and IS50L which contains an ochre mutant allele of the transposase gene. Data presented here show that Tn5 transposition is inhibited about 50-fold in cells of Escherichia coli which already carry IS 50R in the multicopy plasmid pBR322. If the cells contain a plasmid carrying either IS50L instead of IS50R, or derivatives of IS 50R in which the transposase gene has been mutated, little if any inhibition of Tn5 transposition is found. Although inhibition had previously been hypothesized to require interaction between the products of IS50 L and IS50R, our results show that IS50R alone is sufficient to mediate inhibition and suggest that the inhibitor is a product of the transposase gene itself.  相似文献   

19.
Functional characterization of the prokaryotic mobile genetic element IS26   总被引:1,自引:0,他引:1  
Summary IS26L and IS26R are the 820 bp long elements found as direct repeats at both ends of the kanamycin resistance transposon Tn2680. They can mediate cointegration in E. coli K12 which contains no IS26 in its chromosome. Cointegration occurs in rec + or recA - strains with similar frequency. Upon cointegration mediated by either IS26R or IS26L, the element is duplicated and integrated into one of many different sites. Both IS26L and IS26R carry 14 bp perfect terminal inverted repeats and generate 8 bp direct repeats at their target sequences. Deletion formation mediated by IS26R was also observed. These functional and structural features of IS26 are characteristic of a prokaryotic mobile genetic element.  相似文献   

20.
Vectors for transposon mutagenesis of non-enteric bacteria   总被引:1,自引:0,他引:1  
Summary We have constructed a series of transposon delivery vectors derived from pRK2013. Since pRK2013 has a broad host range transfer system and a ColE1 replicon, it can be transferred to, but not replicated in, many nonenteric gram-negative bacteria. Thus pRK2013 provides an effective mechanism for the transient introduction of a transposon. Delivery vectors containing Tn7 (tmp str), Tn10 (tet), Tn10 HH104 (tet), or Tn5-132 (tet) have been constructed. When transposition in Caulobacter crescentus was examined, both Tn7 and Tn5-132 were found to transpose efficiently. In contrast, although the antibiotic resistances of Tn10 and Tn501 (mer) were expressed in C. crescentus, no transposition was observed with either transposon. However, transposition of Tn10 from the Tn10 vectors did occur in Acinetobacter calcoaceticus, and transposition of Tn501 from pMD100 has been demonstrated in Rhizobium japonicum (Bullerjahn and Benzinger 1984). Thus, transposon-host interactions play an important role in the determination of whether a particular transposon can transpose in a given host. Futhermore, the results with C. crescentus indicate that there must be different requirements for host interactions for Tn10 and Tn501 than for Tn5 and Tn7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号