首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured rat hepatocytes exposed to 2-acetylaminofl uorene (AAF), 2-aminofl uorene (AF) or N-hydroxy-2-acetylaminofluorene (N-OH-AFF) for 3 hrs resulted in an increase in DNA repair measured as unscheduled DNA synthesis, with N-OH-AAF > AAF > AF. Cytotoxic effects were only seen with N-OH-AAF above 10–6 M. -Naphthof avone increased the unscheduled DNA synthesis and cytotoxic effects of N-OH-AAF, whereas it decreased DNA repair and the covalent binding of AAF to cellular proteins. In contrast, very little effects of paraoxon were seen on the repair synthesis elicited by AAF, AF or N-OH-AAF. The addition of ascorbate reduced the covalent binding of AAF, the DNA repair synthesis caused by AAF and N-OH-AAF, and the cytotoxic effects of N-OH-AAF. The addition of pentachlorophenol or salicylamide all resulted in similar effects as ascorbate, through reduction of sulfation. Galactosamine, an inhibitor of glucuronidation, and the nucleophile GSH caused no or only minor effects of the activation of AAF, AF or N-OH-AAF as judged from the endpoints tested. These results are consistent with an arylnitrenium ion, a sulfate ester or a free radical as the arylamine metabolite causing cellular DNA damage, whereas the sulfate ester or a radical intermediate may be responsible for the cytotoxic effects of N-OH-AAF.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - N-OH-AAF N-hydroxy-2-acetylaminofluorene - cytochrome P-450 a collective term for all forms of the cytochrome P-450 polysubstrate monooxygenase - DMSO dimethyl sulfoxide - HU hydroxyurea - S-9 9000 g supernatants - LDH lactate dehydrogenase - UDS unscheduled DNA synthesis - ANF -naphthoflavone - GSH glutathione - PCP pentachlorophenol - MET metyrapone - PAR paraoxon - DEM dimethylmaleate  相似文献   

2.
The effects of quercetin on the mutagenicity of 2-acetylaminofluorene (AAF) and its 3 active metabolites, N-hydroxy-AAF (N-OH-AAF), aminofluorene (AF) and N-acetoxy-AAF(N-OAc-AAF) were investigated. The mutagenicity assays were carried out with Salmonella typhimurium TA98, and S9, microsomes and cytosol were used as metabolic activation systems. In the presence of S9, quercetin enhanced the mutagenicity of AAF, N-OH-AAF, AF and N-OAc-AAF by 6.9-, 4.3-, 3.6- and 3.9-fold, respectively. Quercetin enhanced the mutagenicity of these substrates with microsomes, whereas it depressed the mutagenicity of these substrates with cytosol. From these results, it seemed probable that quercetin promotes the N-hydroxylation and deacetylation in the microsomes, whereas it inhibits the deacetylation in the cytosol. It was shown that in the metabolism of AAF and its metabolites, quercetin modulates the balance between the mutagenicity activation and inactivation processes, which is catalysed by the enzymes in the microsomes and cytosol, and causes enhancement of the mutagenicity of AAF.  相似文献   

3.
Coincubation of isolated and intact rat hepatocytes and Salmonella typhimurium, (Salmonella/hepatocyte system) strain TA 98 was employed to determine both bacterial mutagenicity and DNA damage in the hepatocytes as measured by alkaline elution, following treatment with 2-acetylaminofluorene (AAF), 2-aminofluorene (AF) and N-hydroxy-2-acetylaminofluorene (N-OH-AAF). Both the mutagenicity and the rate of DNA elution were dose-dependent for all three compounds. N-OH-AAF was 5 times more mutagenic and caused 80–100 times more DNA damage in the hepatocytes than AAF and AF when compared on a molar basis. The Salmonella/hepatocyte system may provide a more comprehensive evaluation of the potential genotoxic effect of chemicals than the currently used microbial mutagenesis sytems.  相似文献   

4.
The effect of quercetin as the comutagen on 2-acetylaminofluorene (AAF) was investigated. AAF was metabolized with mammalian metabolic systems (S9 mix) in the presence or absence of quercetin in vitro, and its metabolites were determined by high-performance liquid chromatography. In the presence of quercetin, the total metabolic rate of AAF decreased compared with that in the absence of quercetin, whereas the formation of N-hydroxy-AAF (N-OH-AAF) and 2-aminofluorene (AF) increased. Since the main metabolic pathway of AAF is aryl-hydroxylation, it is suggested that the decrease of total metabolic rate of AAF is due to the inhibition of aryl-hydroxylation by quercetin. From these results, it seems probable that the comutagenic effect of quercetin on AAF is due to the inhibition of aryl-hydroxylation (the detoxifying pathway) and the promotion of N-hydroxylation and deacetylation (the activating pathway) in the AAF metabolism with S9 mix.  相似文献   

5.
2-Acetylaminofluorene (AAF) and 2-aminofluorene (AF), as well as their N-hydroxylated metabolites, N-OH-AAF and N-OH-AF, were studied for mutagenic effects in Salmonella typhimurium with rat- and mouse-liver S9 and microsomal subfractions in the presence of cofactors for glucuronidation and glutathione (GSH) transfer. Addition of UDPGA did not affect the mutagenicity of AAF, AF or N-OH-AAF under any experimental condition. Addition of GSH, on the other hand, markedly inhibited AAF, AF and N-OH-AAF. This seemed to be due to the direct effect of GSH, and not through an enzyme-catalyzed conjugation. Further, GSH inhibited the direct mutagenicity of N-OH-AF.  相似文献   

6.
The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 3-OH-AAF 3-hydroxy-2-acetylaminofluorene - 5/9-OH-AAF a combination of 5 and 9-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8-OH-AAF 8-hydroxy-2-acetylaminofluorene  相似文献   

7.
The mutagenic activation of 2-acetylaminofluorene (AAF) and its derivatives N-hydroxy-AAF and 2-aminofluorene (AF) by pulmonary and hepatic microsomal fractions from untreated rabbits was investigated using Salmonella strain TA98. The mutagenicity of AAF in the presence of hepatic microsomes followed typical saturation kinetics. However, in the presence of pulmonary microsomes, the mutagenic activity increased linearly with increasing substrate concentration and approximated that obtained with low concentrations of AF. N-Hydroxy-AAF was 1/10th as mutagenic as AF in the presence of pulmonary microsomes, but 2-2.5 times more mutagenic than AF in the presence of hepatic microsomes. The activation of AAF by both fractions was completely inhibited by the deacetylase inhibitor paraoxon. Although AAF does not appear to be a substrate for cytochrome P450 form 5, antibodies to this form inhibited the activation of AAF by pulmonary and hepatic microsomes by 90% and 60%, respectively. These results indicate that the mutagenic activation of AAF by these fractions primarily involves deacetylation to AF, followed by cytochrome P450 form 5-mediated activation of AF.  相似文献   

8.
The direct-acting cytotoxic properties of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and N-hydroxy-2-aminofluorene (N-OH-AF) have been determined in repair-proficient (AA8-4) and repair-deficient (UV-5) Chinese hamster ovary cells. Cytotoxicity comparisons indicate that UV-5 cells are considerably more sensitive to exposure to N-OH-AAF than is the parental AA8-4 cell line, i.e., concentrations needed to obtain a D37 for survival of AA8-4 is greater than 5-fold higher than for UV-5. Mutation analysis at the HGPRT locus also indicates the increased sensitivity of UV-5 cells to N-OH-AAF as witnessed by an enhanced induction of 6-thioguanine-resistant colonies at equitoxic doses. Conversely, N-OH-AAF, did not induce a 'UV-mimetic' response when comparing genotoxicity between these two cell lines. Our data coupled with previously published model-building and adduct removal studies (Broyde and Hingerty, 1983; Fuchs and Daune, 1974; Grunberger and Weinstein, 1976; Yamasaki et al., 1977) suggest that the minor DNA adduct species, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene, may be responsible for the hypermutagenicity witnessed in DNA excision-repair-deficient cells treated with N-OH-AAF.  相似文献   

9.
Acetaminophen, a widely prescribed analgesic that causes fulminant hepatic necrosis in overdosed humans, produced varying degrees of hepatotoxixity in mice, rats, hamsters, guinea pigs and rabbits. The severity of hepatic injury paralleled the rate of activation of acetaminophen by hepatic microsomal enzymes to a potent arylating agent. The severity of hepatic damage in various species also correlated directly with the rate of hepatic glutathione depletion after acetaminophen. These findings support the hypothesis that the electrophilic arylating agent formed from acetaminophen invibo is preferentially detoxified by conjugation with glutathione and that arylation of hepatic macromolecules occurs only when glutathione availability is exceeded. Since N-hydroxylation of another N-acetylarylamine (2-acetylaminofluorene) occurs to a much greater extent in the species that are susceptible to acetaminophen-induced hepatic necrosis, the data also are consistent with the hypothesis that the toxic metabolite of acetaminophen results from N-hydroxylation.  相似文献   

10.
The ability of human red blood cell cytosol to activate aromatic amines was evaluated with the Ames test using Salmonella typhimurium TA98 in the liquid preincubation condition. While negative results were obtained with 4-acetylaminofluorene (4AAF) and 1-naphtylamine (1NA), a slight response was observed for 4-aminobiphenyl (4ABP) and 2-naphthylamine (2NA). Human red blood cell cytosol was able to activate 2-aminofluorene (2AF), 2-acetylaminofluorene (2AAF) and 2-aminoanthracene (2AA) to mutagenic intermediates. Extracts of human red blood cell cytosol incubated with 2AF were analyzed by gas chromatography: N-hydroxy-2-aminofluorene was identified as a metabolite.  相似文献   

11.
Oxidation of 2-acetylaminofluorene (AAF), a carcinogen, by a chemical model for cytochrome P450 was investigated to identify an active mutagen and elucidate the oxidation pathway. The oxidation system consisted of a water-insoluble tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride and tert-butyl hydroperoxide. The mutagen derived from AAF by the chemical model was 2-nitro-9-fluorenone (NO(2)=FO), which was mutagenic in Salmonella typhimurium TA1538. AAF was oxidized initially at position 9 of the fluorene carbon by the chemical model forming 2-acetylamino-9-fluorenol (AAF-OH), and then oxidized further to 2-acetylamino-9-fluorenone (AAF=O) as a major product. Initial oxidation of the nitrogen formed 2-nitrofluorene (NO(2)F), and further oxidation yielded 2-nitro-9-fluorenol (NO(2)F-OH) as a minor product. These products, AAF-OH, AAF=O, NO(2)F, and NO(2)F-OH, and their presumable common intermediate, N-hydroxy-2-acetylaminofluorene, were oxidized by the chemical model, and the formation of NO(2)F=O was determined. These results showed that NO(2)F=O was the mutagen derived from AAF in the presence of the chemical model and was formed via oxidation of N-OH-AAF, NO(2)F, and NO(2)F-OH. These results may lead to a new metabolic pathway of AAF.  相似文献   

12.
13.
32P-Postlabeling techniques have been developed to detect and measure adducts formed by covalent binding of carcinogens of Known or unknown origin with DNA (and RNA). The assay is applicable to various classes of chemical carcinogens and permits detection of many adducts at attomole (10–18 mol) level using microgram amounts of DNA. Here, we demonstrate the application of the assay for the analysis of short- and long-term persistence of 2-acetylaminofluorene-DNA adducts in rat liver in vivo and also outline examples illustrating the applicability of the procedure to different experimental problems.Abbreviations AAF 2-acetylaminofluorene - N-OH-AAF N-hydroxy-2-acetylaminofluorene  相似文献   

14.
Monolayers of rat hepatocytes metabolize 0.25 m M 2-acetylaminofluorene (AAF) to various ether-extractable, water-soluble as well as covalently bound products. The major ether-extractable metabolite formed is 2-aminofuorene (AF), followed by 7-OH-AAF and 9-OH-AAF. Pretreatment of rats with the inducer Aroclor 1254 (PCB) increased the metabolism of AAF and caused an increased DNA repair synthesis in hepatocytes exposed to AAF or AF. With N-OH-AAF, a decreased genotoxic response in PCB-treated cells compared to control cells was seen. The addition of harman and norharman decreased the metabolism of AAF to ether-extractable metabolites, water-soluble metabolites and metabolites covalently bound to macromolecules. In contrast, the DNA-repair synthesis caused by the same concentrations of AAF was increased by harman. One explanation for this apparent discrepancy could be that the aromatic amines changed the metabolism of harman and norharman in such a way that these compounds were converted into genotoxic metabolites.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-ydroxy-2-acetylaminofluorene - PCB polychlorinated biphenyls, Aroclor 1254 - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin - TdR thymidine - Trp-P-1 3-amino-1,4dimethyl-5H-pyrido(4,3b)indole - Trp-P-2 3-amino-l-methyl-5H-pyrido(4,3b)indole - UDS unscheduled DNA synthesis  相似文献   

15.
The metabolism and mutagenicity of 2-acetylaminofluorene were measured using freshly prepared intact bladder and liver cells from the cow, dog and rat. High pressure liquid chromatography was used to separate 2-acetylaminofluorene metabolites, andSalmonella typhimurium, strain TA98, was used to detect mutagenic intermediates. Species differences as well as animal-to-animal variation within a species were observed. Mutagenic activity with 2-acetylaminofuorene was greater with cow bladder cells than with dog or rat bladder cells. However, dog bladder cells were most active in metabolizing 2-acetylaminofluorene, and rat bladder cells were least active. Liver cells from all three species metabolized 2-acetylaminofluorene to mutagens forSalmonella, with dog and cow cells being more active than rat liver cells. However, cow liver cells were the most active in metabolizing 2-acetylaminofuorene, followed by rat and dog cells. With all cell types studied, except rat bladder cells, aminofluorene was the major metabolite detected. Carbon and N-hydroxylated products were produced by liver and bladder cells of the three species and glucuronide and sulfate conjugates of the metabolites were detected from both cell types. Correlations between mutagenic activity and the level of metabolism or any individual metabolite were not apparent. The data suggest that the relative contribution of bladder cell metabolism in aromatic amine induced bladder cancer may vary with the species.Abbreviations AAF 2-acetylaminofluorene - 4-ABP 4-aminobiphenyl - AF aminofluorene - BZ benzidine - cytochrome P-450 a collective term for all forms of the cytochrome P-450 polysubstrate mono-oxygenases - FMO flavin mono-oxygenases - HPLC high pressure liquid chromatography - MNNG N-methyl-N-nitro-N-nitrosoguani-dine - 2-NA 2-naphthylamine - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 5-OH-AAF 5-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8OH-AAF 8-hydroxy-2-acetylaminofluorene - 9-OH-AAF 9-hydroxy-2-acetylaminofluorene - UDS unscheduled DNA synthesis  相似文献   

16.
The addition of 1,8-pyrenequinone into the assay system containing rat liver homogenates (S-9) caused an approximately 10-fold increase in the mutagenicity of 2-acetylaminofluorene (AAF) in the current Salmonella reversion assay system. Since no chemical reaction between 1,8-pyrenequinone and AAF was observed, the in vitro effects of 1,8-pyrenequinone on the metabolisms of AAF with S-9 mix were studied. The enhancement of mutagenicity by 1,8-pyrenequinone was not dependent on the dose of NADPH under the present assay condition. The mutagenicity of AAF was increased approximately 4-fold by the addition of 1,8-pyrenequinone into microsomes, whereas it remained at the spontaneous level in the presence of cytosol. However, by reconstituting microsomes with cytosol, the mutagenicity enhancing activity was recovered to the original level. Since 1,8-pyrenequinone inhibited the AAF hydroxylase activity, chemical analysis of the incubation mixture of AAF was tried. This indicated that a higher amount of unmetabolized AAF remained and higher amounts of 2-aminofluorene and N-hydroxy-2-acetylaminofluorene were accumulated in the presence of 1,8-pyrenequinone compared with those in the absence of 1,8-pyrenequinone. From these results, it seems probable that 1,8-pyrenequinone inhibits C-hydroxylation (the detoxifying pathway) and promotes N-hydroxylation (the activating pathway) as well as deacetylation in the AAF metabolism.  相似文献   

17.
The mutagenicities of aniline, o-toluidine and yellow OB were demonstrated only in the presence of the β-carboline compound, norharman. The effect of norharman increased linearly with increase in the amount of S-9. The mutagenicity of 4-dimethylaminoazobenzene was greatly enhanced by the presence of norharman, and again dose-dependency on the amount of S-9 was observed. In the presence of a large amount of S-9, norharman caused several fold enhancement of the mutagenicities of N-2-fluorenylacetamide, benzo(a)-pyrene, and 1,4-dimethyl-3-amino-5H-pyrido(4,3b) indole, isolated from a tryptophan pyrolysate. However, norharman suppressed the mutagenicities of these compounds in the presence of a small amount of S-9. The mutagenicity of kaempferol, a flavonoid, was inhibited by norharman with either a large or small amount of S-9.  相似文献   

18.
Exponentially growing TK6 human lymphoblasts were exposed to either 0-50 microM N-hydroxy-2-acetylaminofluorene (N-OH-AAF) or 0-10 microM 7-acetyl-N-hydroxy-2-acetylaminofluorene (7-acetyl-N-OH-AAF) in both the absence and presence of a partially purified preparation of hamster-liver N-arylhydroxamic acid N,O-acyltransferase (AHAT). Neither N-arylhydroxamic acid was toxic to the lymphoblasts, nor mutagenic at the thymidine kinase (tk) locus, in the absence of AHAT over the concentration range examined. In the presence of AHAT, an enzyme that activates N-arylhydroxamic acids to electrophilic N-acetoxyarylamine intermediates, both compounds caused toxicity and mutagenicity in TK6 cells. The 7-acetyl-N-OH-AAF was approximately 10-fold more toxic and mutagenic than the unsubstituted N-OH-AAF. These data demonstrate that metabolism of these N-arylhydroxamic acids, presumably to N-acetoxyarylamine intermediates by AHAT, is a key event in the biological activity of these agents. In addition, the presence of electron-withdrawing 7-acetyl substituent that is thought to stabilize N-acetoxy intermediates, appears to enhance the biological activity of the unsubstituted N-OH-AAF.  相似文献   

19.
2-Acetylaminofluorene (AAF) was highly mutagenic to Salmonella typhimurium strain TA98, when activated by a liver post-mitochondrial supernatant fraction (S9 fraction) from guinea-pigs, in spite of the resistance of this species to AAF carcinogenesis and the low capacity of the liver of this species for N-hydroxylation of AAF. The mutagenicity was comparable to or higher than that resulting from activation by mouse- or rat-liver S9 fraction, and was not enchanced by treatment with cytochrome P-450 inducers, a combination of phenobarbital and 5,6-benzoflavone. In an attempt to understand this unexpected result we examined whether a cytochrome P-450 mixed-function oxidase system participated in the mutagenic activation of AAF by guinea-pig liver, as it does in the case of mouse liver. The mutagenic activation was: (1) completely dependent on the addition of a co-factor, NADPH, to the mutation assay system, (2) completely suppressed by antiserum against NADPH--cytochrome c reductase, and (3) sensitive to a cytochrome P-450 inhibitor, 7,8-benzoflavone. These results indicate that the cytochrome P-450 enzyme system is essentially involved even in the mutagenic activation of AAF by guinea-pig-liver S9 fraction. Based on both the present and other data, the mechanism of the mutagenic activation is discussed to explain the observed high mutagenic potential of AAF in the presence of guinea-pig-liver S9 fraction.  相似文献   

20.
The metabolism of 2-acetylaminofluorene (AAF) in primary cultures of rat and human hepatocytes was investigated to determine if the activation of this well-studied chemical carcinogen proceeds via similar routes of metabolism between species. The total level of AAF metabolite(s) bound to hepatocellular DNA was determined in the presence of deacetylase inhibitors, diethyl(p-nitrophenyl) phosphate (paraoxon) or bis(p-nitrophenyl) phosphate (BPNPP). These compounds are known to inhibit deacetylase and to decrease the mutagenicity of AAF. Experiments with rat and human hepatocytes demonstrated inhibition in the deacetylation of AAF (5×10−4 M) with paraoxon or BPNPP. The BPNPP (5×10−4 M inhibited 99% of the AF formation in the human hepatocytes and 88% inhibition in the rat hepatocytes. Paraoxon at 10−4 M demonstrated a 98% inhibition of deacetylation with humans and a 92% inhibition with rats. The rat hepatocytes also showed a 53% decrease in DNA binding in the presence of paraoxon. In contrast with human hepatocytes, while paraoxon decreased the AF metabolite by > 97%, there was no change in total DNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号