首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A petrochemical wastewater isolate, capable of utilizing high concentrations of acetonitrile and acetamide as the sole source of carbon and nitrogen was identified as Rhodococcus erythropolis A10. Cell-free extracts of acetonitrile-grown cells exhibited activities corresponding to nitrile hydratase (EC 4.2.1.84) and amidase (EC 3.5.1.4), which mediate the two-step breakdown of acetonitrile into acetic acid and ammonia. Studies indicated that both these enzymes in R. erythropolis A10 are intracellular, inducible and capable of hydrolysing a wide range of nitriles, including simple (acetonitrile, propionitrile), branched-chain (isobutyronitrile) and dinitrile (succinonitrile). The specific activity of the amidase was found to be several-fold higher than nitrile hydratase.  相似文献   

2.
2,6-Pyridinedicarbonitrile (1a) and 2,4-pyridinedicarbonitrile (2a) were hydrated by Rhodococcus erythropolis A4 to 6-cyanopyridine-2-carboxamide (1b; 83% yield) and 2-cyanopyridine-4-carboxamide (2b; 97% yield), respectively, after 10 min. After 118 h, the intermediates 1b or 2b were transformed into 2,6-pyridinedicarboxamide (1c; 35% yield) and 2,6-pyridinedicarboxylic acid (1d; 60% yield) or 2-cyanopyridine-4-carboxylic acid (2c; 64% yield), respectively. The nitrilase from Fusarium solani afforded cyanocarboxylic acids 1e and 2c after 118 h (yields 95 and 62%, respectively). 3,4-Pyridinedicarbonitrile (3a) and 2,3-pyrazinedicarbonitrile (4a) were inferior substrates of nitrile hydratase and nitrilase.  相似文献   

3.
Jahns T  Schepp R 《Biodegradation》2001,12(5):317-323
A new enzyme (isobutylidenediurea amidinohydrolase) catalyzing the hydrolysis of isobutylidenediurea (a condensation product of urea and isobutyraldehyde widely used as a slow-release nitrogeneous fertilizer) was characterized from a strain of Rhodococcus erythropolis. The enzyme was purified 1250-fold to apparent homogeneity and shown to hydrolyze the fertilizer to urea and isobutyraldehyde at a molar ratio of 2 : 1. No activity was observed with ureido- or other structurally related compounds. Its molecular mass was determined by native polyacrylamide gelelectrophoresis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry to be 15 kDa (±2 kDa) and 16.4 kDa, respectively. Growth of the bacterium in the presence of isobutylidenediurea led to an increased expression of the constitutively synthetized enzyme.  相似文献   

4.
Abstract The effects of cobalt ions on the activities of Rhodococcus rhodochrous M8 enzymes for nitrile utilization, nitrile hydratase and amidase, were investigated. In contrast to amidase, synthesis of nitrile hydratase and its activity required cobalt ions in the growth medium. Northern blot analysis showed that in the presence of cobalt ions, the level of mRNA for nitrile hydratase genes was several times higher than that under cobalt-limited conditions. It was assumed that the low nitrile hydratase activity in cells grown in the absence of cobalt ions is connected either with the weak expression of nitrile hydratase genes or with the rapid degradation of nitrile hydratase mRNA.  相似文献   

5.
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion.  相似文献   

6.
Butyramide is an important chemical commodity, which is used for the synthesis of hydroxamic acids and electrorheological fluids and for the preparation of β-amodoorganotin compounds. The nitrile hydratase (Nhase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of butyronitrile to butyramide. The maximum Nhase activity [18 U/mg dry cell weight (dcw)] of whole cells of R. rhodochrous PA-34 was observed at pH 7.0 with 10% (v/v) butyronitrile and 1 mg cells (dcw)/ml reaction mixture at 10°C. The cells of R. rhodochrous PA-34 retained almost 50% activity when incubated for 1 h in the presence of 85% (v/v) butyronitrile. A yield of 597 g of butyramide (6.8 M) was obtained using 60% (v/v) butyronitrile, 1 g cells (dry weight) in a 1-l batch reaction at 10°C for 6 h.  相似文献   

7.
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the α- and β-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO4 could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.  相似文献   

8.
The dsz desulfurization gene cluster from Rhodococcus erythropolis strain KA2-5-1 was transferred into R. erythropolis strain MC1109, unable to desulfurize light gas oil (LGO), using a transposon-transposase complex. As a result, two recombinant strains, named MC0203 and MC0122, were isolated. Resting cells of strain MC0203 decreased the sulfur concentration of LGO from 120 mg l–1 to 70 mg l–1 in 2 h. The LGO-desulfurization activity of strain MC0203 was about twice that of strain MC0122 and KA2-5-1. The 10-methyl fatty acids of strain MC0203 were about 28%–41% that of strain MC1109. It is likely that strain MC0203 had a mutation involving alkylenation or methylation of 9-unsaturated fatty acids caused by the transposon inserted in the chromosome, which increased the fluidity of cell membranes and enhanced the desulfurization activity.  相似文献   

9.
Dienelactone hydrolases (EC 3.1.1.45) have been shown to play an indispensable role in the degradation of chloroaromatic compounds via ortho-cleavage of chlorocatechols. We report on the purification of dienelactone hydrolase of the chlorophenol-utilizing strain Rhodococcus erythropolis 1CP to apparent homogeneity. Dienelactone hydrolase differed fron the corresponding enzymes of other chloroaromatic compound-catabolizing strains in being restricted to substrates with a cis-dienelactone structure. From the cis-dienelactone-hydrolyzing enzyme of a 4-fluorobenzoate-utilizing Burkholderia (Pseudomonas) cepacia strain, it differed considerably in properties such as pH optimum of activity, inhibition by p-chloromercuribenzoate, and amino acid composition. Thus, there is not necessarily a close relationship between substrate specificity and other properties of dienelactone hydrolases.  相似文献   

10.
A Rhodococcus sp. which is able to grow on acetylene and methylacetylene as well as on more common carbon compounds was isolated from soil. Growth of the organism, respiration of washed cells, excretion experiments and enzyme studies were consistent with the degradation of acetylene via acetaldehyde. Cell-free extracts of organisms grown on acetylene contained an acetylene hydratase at high levels. This enzyme was inhibited by oxygen but not by high concentrations of the reaction product acetaldehyde.  相似文献   

11.
Li GQ  Li SS  Qu SW  Liu QK  Ma T  Zhu L  Liang FL  Liu RL 《Biotechnology letters》2008,30(10):1759-1764
Substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) remain in diesel oil following conventional desulfurization by hydrodesulfurization. A mixture of washed cells (13.6 g dry cell wt l−1) of Rhodococcus erythropolis DS-3 and Gordonia sp. C-6 were employed to desulfurize hydrodesulfurized diesel oil; its sulfur content was reduced from 1.26 g l−1 to 180 mg l−1, approx 86% (w/w) of the total sulfur was removed from diesel oil after three cycles of biodesulfurization. The average desulfurization rate was 0.22 mg sulfur (g dry cell wt)−1 h−1. A bacterial mixture is therefore efficient for the practical biodesulfurization of diesel oil.  相似文献   

12.
Rhodococcus pyridinovorans MW3 was isolated from an arable land of manioc from the Congo for its ability to transform acrylonitrile to acrylamide. This strain contains a cobalt nitrile hydratase (NHase) showing high sequence homology with NHases so far described. The specific NHase activity was 97 U mg(-1) dry wt. NHase production by R. pyridinovorans MW3 was urea and Co-dependent. The NHase was active for acrylamide up to 60% (w/v) indicating its potential for acrylamide production.  相似文献   

13.
14.
Two Rhodococcal isolates, one possessing a nitrile hydratase and an amidase enzyme, the other an aliphatic nitrilase enzyme have been isolated. The kinetic constants for the enzymes in each isolate have been determined. This data coupled with stability tests indicate that Rhodococcus ruber NCIMB 40757, the nitrilase containing organism, should be an excellent biocatalyst for the commercial production of ammonium acrylate. This is confirmed by a fed-batch bioconversion to produce 5.7 M ammonium acrylate.  相似文献   

15.
A propionitrile-induced nitrile hydratase (NHase), a promising biocatalyst for synthesis of organic amides has been purified from cell-free extract of Rhodococcus rhodochrous PA-34. About 11-fold purification of NHase was achieved with 52% yield. The SDS-PAGE of the purified enzyme revealed that it consisted of two subunits of 25.04 kD and 30.6 kD. However, the molecular weight of holoenzyme was speculated to be 86 kD by native-PAGE. This NHase exhibited maximum activity at pH 8.0 and temperature 40°C. Half-life was 2 h at 40°C and 0.5 h at 50°C. The Km and Vmax were 167 mM and 250 μmole/min/mg using 25 mM 3-cyanopyridine as substrate. AgNO3, Pb(CH3COO)2 and HgCl2 inhibited the NHase to extent of 89–100%.  相似文献   

16.
A comparative study of amino acid sequence and physicochemical properties indicates the affiliation of an amidase from Rhodococcus rhodochrous M8 (EC 3.5.1.4) to the nitrilase/cyanide hydratase family. Cluster analysis and multiple alignments show that Cys166 is an active site nucleophile. The enzyme has been shown to be a typical aliphatic amidase, being the most active toward short-chain linear amides. Small polar molecules such as hydroxylamine and O-methyl hydroxylamine can serve as effective external nucleophiles in acyl transfer reactions. The kinetics of the industrially important amidase-catalyzed acrylamide hydrolysis has been studied over a wide range of substrate concentrations; inhibition during enzymatic hydrolysis by the substrate and product (acrylic acid) has been observed; an adequate kinetic scheme has been evaluated and the corresponding kinetic parameters have been determined.  相似文献   

17.
Enzyme activities have been measured in the partners of a bacterial mating system consisting of the hydrogen autotroph Nocardia opaca (donor and Aut- recipient), the heterotroph Rhodococcus erythropolis (recipient) and intra- and interspecies transconjugants after growth on fructose, pyruvate and under autotrophic conditions. Specific activities of each of the enzymes hydrogenase, phosphoribulokinase and ribulosebisphosphate carboxylase were high in autotrophically grown cells of the donor and the transconjugants: they amounted to only 10% after growth on pyruvate. The recipient cells did not grow autotrophically and the enzymes mentioned were not detectable even after growth on pyruvate. Other enzymes of the Calvin cycle were constitutively formed in all strains examined.The properties of hydrogenase (K m for NAD, Rf in gel electrophoresis) and of ribulosebisphosphate carboxylase (K m for RuBP and Rf) were the same in the donor and transconjugant cells. The properties of glucose-6-phosphate dehydrogenase (K m for G-6-P and mode of inhibition by ATP and phosphoenolpyruvate) were the same in the recipient and the interspecies transconjugant cells and differed from those of the donor cells. The curves of growth under autotrophic conditions in batch culture of the donor and interspecies transconjugant were almost congruent. The specific activities of hydrogenase, phosphoribulokinase and ribulosebisphosphate carboxylase increased from 40% at the beginning to 100% at the end of the exponential growth phase; these enzymes were under coordinate control.The results are in accordance with genetic studies: the genetic information for autotrophic growth is localized on a so far unidentified genetic element and is transferred en bloc from N. opaca to Aut- mutants of the same strain or to recipient bacteria such as R. erythropolis; expression in the wild type and transconjugant cells is the same.Abbreviations G-6-P glucose-6-phosphate - 6-PG 6-phosphogluconate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Whole cells and cell-free extracts derived from Rhodococcus rhodochrous NCIMB 11216 were shown to hydrolyse both aliphatic and aromatic nitriles, when the organism had been grown on either propionitrile or benzonitrile as the source of carbon and nitrogen. Whole cell suspensions and cell-free extracts derived from bacteria grown on either substrate were able to biotransform R-(-),S-(+)-2-methylbutyronitrile. The S-(+) enantiomer was biotransformed more rapidly than the the R-(-) enantiomer. For whole cell biotransformations at 30°C, the maximum enantiomeric excess (ee) of the remaining R-(-)-2-methylbutyronitrile was 93% when 70% of the R-(-) enantiomer had been converted to the product, 2-methylbutyric acid. For the corresponding biotransformation at 4°C, there was an ee of 93% for the residual R-(-) enantiomer of the substrate when only 60% of it had been converted to product. For biotransformations by cell-free extracts at 30°C the 2-methylbutyric acid product had an ee of 17% for the S-(+) enantiomer at the time of optimal ee for the remaining R-(-) enantiomer of the substrate. In contrast, when the reaction was carried out by whole cells, the ee for the product acid was 0.36%. This was probably due to further, non-selective metabolism of the acid, which was especially significant at the beginning of the reaction. At both temperatures, the ee for the S-(+) enantiomer of 2-methylbutyric acid was at a maximum in the early stage of the biotransformation; for example, at 4°C the maximum detectable ee was 100% when the yield was 11%.Abbreviations EDTA Ethylenediaminetetraacetic acid - ee enantiomeric excess - FID flame ionisation detector - GC gas chromatography - 1HNMR H nuclear magnetic resonance - K m Michaelis constant - NCIMB National Collection of Industrial and Marine Bacteria - td doubling time - V max Maximum velocity  相似文献   

19.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   

20.
The cellsof Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature for the activity of nitrile hydratase in both the free and immobilized cells were 7.4 and 45°C, respectively, yet the optinum temperature for acrylamide production by the immobilized cells was 20°C. The nitrile hydratase of the immobilized cells was more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly decreased with repeated use. However, the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to be of commercial use without further purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号