首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives:  Syndecan-1 is a transmembrane proteoglycan involved in various biological processes. Its extracellular, transmembrane and cytoplasmic domains may all participate in signal transduction. The aim of this study was to investigate the biological roles of these domains of syndecan-1.
Materials and methods:  We transfected cells of two mesenchymal tumour cell lines with a full-length syndecan-1 construct and three truncated variants, namely 78 construct lacking the EC domain with exception of DRKE sequence; 77 construct lacking extracellular the whole domain and RMKKK corresponding to a short cytoplasmic motif. Subcellular distribution was revealed using confocal laser microscopy. Overexpression of the constructs was verified using real-time RT-PCR and by FACS analysis and effects of syndecan-1 on cell behaviour were explored. Cell cycle analysis allowed for dissection of mechanisms regulating cell proliferation.
Results:  Overexpression of syndecan-1 influenced expression profile of the other syndecan members, and decreased tumour cell proliferation significantly by two mechanisms, as follows: increased length of G0/G1 phase was the most evident change in RMKKK and 77 transfectants, whereas prolonged S phase was more obvious in full-length transfectants. Overexpression of syndecan-1 changed the tumour cell morphology in an epithelioid direction.
Conclusions:  Both full-length and truncated syndecan-1 inhibited proliferation of the mesenchymal tumour cells, providing new insights into the importance for cancer growth of different functional domains of this proteoglycan.  相似文献   

2.

Background

Lung injury promotes the expression of matrix metalloproteinase-7 (MMP7, matrilysin), which is required for neutrophil recruitment and re-epithelialization. MMP7 governs the lung inflammatory response through the shedding of syndecan-1. Because inflammation and repair are related events, we evaluated the role of syndecan-1 shedding in lung re-epithelialization.

Methodology/Principal Finding

Epithelial injury induced syndecan-1 shedding from wild-type epithelium but not from Mmp7−/− mice in vitro and in vivo. Moreover, cell migration and wound closure was enhanced by MMP7 shedding of syndecan-1. Additionally, we found that syndecan-1 augmented cell adhesion to collagen by controlling the affinity state of the α2β1 integrin.

Conclusion/Significance

MMP7 shedding of syndecan-1 facilitates wound closure by causing the α2β1 integrin to assume a less active conformation thereby removing restrictions to migration. MMP7 acts in the lungs to regulate inflammation and repair, and our data now show that both these functions are controlled through the shedding of syndecan-1.  相似文献   

3.
4.
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α2β1 integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.  相似文献   

5.
Y Jiao  X Feng  Y Zhan  R Wang  S Zheng  W Liu  X Zeng 《PloS one》2012,7(7):e41591

Background

Matrix metalloproteinase-2 (MMP-2) is a key regulator in the migration of tumor cells. αvβ3 integrin has been reported to play a critical role in cell adhesion and regulate the migration of tumor cells by promoting MMP-2 activation. However, little is known about the effects of MMP-2 on αvβ3 integrin activity and αvβ3 integrin-mediated adhesion and migration of tumor cells.

Methodology/Principal Findings

Human melanoma cells were seeded using an agarose drop model and/or subjected to in vitro analysis using immunofluorescence, adhesion, migration and invasion assays to investigate the relationship between active MMP-2 and αvβ3 integrin during the adhesion and migration of the tumor cells. We found that MMP-2 was localized at the leading edge of spreading cells before αvβ3 integrin. αvβ3 integrin-mediated adhesion and migration of the tumor cells were inhibited by a MMP-2 inhibitor. MMP-2 cleaved fibronectin into small fragments, which promoted the adhesion and migration of the tumor cells.

Conclusion/Significance

MMP-2 cleaves fibronectin into small fragments to enhance the adhesion and migration of human melanoma cells mediated by αvβ3 integrin. These results indicate that MMP-2 may guide the direction of the tumor cell migration.  相似文献   

6.

Introduction

Syndecans are heparan sulphate proteoglycans expressed by endothelial cells. Syndecan-3 is expressed by synovial endothelial cells of rheumatoid arthritis (RA) patients where it binds chemokines, suggesting a role in leukocyte trafficking. The objective of the current study was to examine the function of syndecan-3 in joint inflammation by genetic deletion in mice and compare with other tissues.

Methods

Chemokine C-X-C ligand 1 (CXCL1) was injected in the joints of syndecan-3−/−and wild-type mice and antigen-induced arthritis performed. For comparison chemokine was administered in the skin and cremaster muscle. Intravital microscopy was performed in the cremaster muscle.

Results

Administration of CXCL1 in knee joints of syndecan-3−/−mice resulted in reduced neutrophil accumulation compared to wild type. This was associated with diminished presence of CXCL1 at the luminal surface of synovial endothelial cells where this chemokine clustered and bound to heparan sulphate. Furthermore, in the arthritis model syndecan-3 deletion led to reduced joint swelling, leukocyte accumulation, cartilage degradation and overall disease severity. Conversely, CXCL1 administration in the skin of syndecan-3 null mice provoked increased neutrophil recruitment and was associated with elevated luminal expression of E-selectin by dermal endothelial cells. Similarly in the cremaster, intravital microscopy showed increased numbers of leukocytes adhering and rolling in venules in syndecan-3−/−mice in response to CXCL1 or tumour necrosis factor alpha.

Conclusions

This study shows a novel role for syndecan-3 in inflammation. In the joint it is selectively pro-inflammatory, functioning in endothelial chemokine presentation and leukocyte recruitment and cartilage damage in an RA model. Conversely, in skin and cremaster it is anti-inflammatory.  相似文献   

7.

Background

Stem cell antigen-1 (Sca-1 or Ly6A) is a glycosyl phostidylinositol (GPI)-anchored cell surface protein associated with both stem and progenitor activity, as well as tumor initiating-potential. However, at present the functional role for Sca-1 is poorly defined.

Methodology/Principal Findings

To investigate the role of Sca-1 in mammary tumorigenesis, we used a mammary cell line derived from a MMTV-Wnt1 mouse mammary tumor that expresses high levels of endogenous Sca-1. Using shRNA knockdown, we demonstrate that Sca-1 expression controls cell proliferation during early tumor progression in mice. Functional limiting dilution transplantations into recipient mice demonstrate that repression of Sca-1 increases the population of tumor propagating cells. In scratch monolayer assays, Sca-1 enhances cell migration. In addition, knockdown of Sca-1 was shown to affect cell adhesion to a number of different extracellular matrix components. Microarray analysis indicates that repression of Sca-1 leads to changes in expression of genes involved in proliferation, cell migration, immune response and cell organization.

Conclusions/Significance

Sca-1 exerts marked effects on cellular activity and tumorgenicity both in vitro and in vivo. A better understanding of Sca-1 function may provide insight into the broader role of GPI-anchored cell surface proteins in cancer.  相似文献   

8.

Background

Nuclear accumulation of the intracellular domain of epithelial cell adhesion molecule (Ep-ICD) in tumor cells was demonstrated to predict poor prognosis in thyroid carcinoma patients in our earlier study. Here, we investigated the clinical significance of Ep-ICD subcellular localization index (ESLI) in distinguishing aggressive papillary thyroid carcinoma (PTC) from non-aggressive cases.

Methods

Using domain specific antibodies against the intracellular (Ep-ICD) and extracellular (EpEx) domains of epithelial cell adhesion molecule, 200 archived tissues from a new cohort of patients with benign thyroid disease as well as malignant aggressive and non aggressive PTC were analyzed by immunohistochemistry (IHC). ESLI was defined as sum of the IHC scores for accumulation of nuclear and cytoplasmic Ep-ICD and loss of membranous EpEx; ESLI = [Ep-ICDnuc + Ep-ICDcyt + loss of membranous EpEx].

Results

For the benign thyroid tissues, non-aggressive PTC and aggressive PTC, the mean ESLI scores were 4.5, 6.7 and 11 respectively. Immunofluorescence double staining confirmed increased nuclear Ep-ICD accumulation and decreased membrane EpEx expression in aggressive PTC. Receiver-operating characteristic (ROC) curve analysis showed an area under the curve (AUC) of 0.841, 70.2% sensitivity and 83.9% specificity for nuclear Ep-ICD for differentiating aggressive PTC from non-aggressive PTC. ESLI distinguished aggressive PTC from non-aggressive cases with improved AUC of 0.924, 88.4% sensitivity and 85.5% specificity. Our study confirms nuclear accumulation of Ep-ICD and loss of membranous EpEx occurs in aggressive PTC underscoring the potential of Ep-ICD and ESLI to serve as diagnostic markers for aggressive PTC. Kaplan Meier survival analysis revealed significantly reduced disease free survival (DFS) for ESLI positive (cutoff >10) PTC (p<0.05), mean DFS = 133 months as compared to 210 months for patients who did not show positive ESLI.

Conclusion

ESLI scoring improves the identification of aggressive PTC and thereby may serve as a useful index for defining aggressiveness and poor prognosis among PTC patients.  相似文献   

9.

Background

Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.

Methods and Findings

We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly.

Conclusions

These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.  相似文献   

10.

Background

Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction.

Methodology/Principal Findings

Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase.

Conclusions/Significance

Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.  相似文献   

11.

Background

The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum.

Methods

Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2), anti-KC (CXCL1) or anti-MCP-1 (CCL2).

Results and Conclusion

Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β 2 integrin (CD18), ICAM-1 (CD54) and VCAM-1 (CD106) did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P) abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte recruitment and is not necessary for the presentation of the chemokine MIP-2 in this tissue.  相似文献   

12.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

13.
14.

Background

ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.

Methodology/Principal Findings

In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.

Conclusions

ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes.  相似文献   

15.

Background

In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chondroitin sulfate A (CSA) in the placental intervillous space and lack of protective antibodies. PM impairs fetal development mainly by excessive inflammation processes. After infections during pregnancy women acquire immunity to PM conferred by antibodies against VAR2CSA. Ideally, a vaccine against PM will induce antibody-mediated immune responses that block the adhesion of infected erythrocytes (IE) in the placenta.

Principal Findings

We have previously shown that antibodies raised in rat against individual domains of VAR2CSA can block IE binding to CSA. In this study we have immunized mice, rats and rabbits with each individual domain and the full-length protein corresponding to the FCR3 VAR2CSA variant. We found there is an inherently higher immunogenicity of C-terminal domains compared to N-terminally located domains. This was irrespective of whether antibodies were induced against single domains or the full-length protein. Species-specific antibody responses were also found, these were mainly directed against single domains and not the full-length VAR2CSA protein.

Conclusions/Significance

Binding inhibitory antibodies appeared to be against conformational B-cell epitopes. Non-binding inhibitory antibodies reacted highly against the C-terminal end of the VAR2CSA molecule especially the highly polymorphic DBL6ε domain. Differential species-specific induction of antibody responses may allow for more direct analysis of functional versus non-functional B-cell epitopes.  相似文献   

16.

Background

Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells.

Methods

Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition.

Results

Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt.

Conclusion

TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.  相似文献   

17.

Background

Human osteopontin (OPN), a known tumor associated protein, exists in different isoforms, whose function is unclear. It also possesses a RGD domain, which has been implicated in diverse function. Here, we use genetic approaches to systematically investigate the function of the RGD domain in different OPN isoforms on tumor progression and metastasis for 2 different solid tumor models.

Methodology/Principal Findings

Using isoform-specific qRT-PCR, we found that OPN-A and B were the main isoforms overexpressed in evaluated human tumors, which included 4 soft tissue sarcomas, 24 lung and 30 head and neck carcinomas. Overexpression of either OPN-A or B in two different cell types promoted local tumor growth and lung metastasis in SCID mouse xenografts. However, expression of either isoform with the RGD domain either mutated or deleted decreased tumor growth and metastasis, and resulted in increased apoptosis by TUNEL staining. In vitro, whereas mutation of the RGD domain did not affect cell-cell adhesion, soft agar growth or cell migration, it increased apoptosis under hypoxia and serum starvation. This effect could be mitigated when the RGD mutant cells were treated with condition media containing WT OPN. Mechanistically, the RGD region of OPN inhibited apoptosis by inducing NF-κB activation and FAK phosphorylation. Inhibition of NF-κB (by siRNA to the p65 subunit) or FAK activation (by a inhibitor) significantly increased apoptosis under hypoxia in WT OPN cells, but not in RGD mutant cells.

Conclusion/Significance

Unlike prior reports, our data suggest that the RGD domain of both OPN-A and B promote tumor growth and metastasis mainly by protecting cells against apoptosis under stressed conditions and not via migration or invasion. Future inhibitors directed against OPN should target multiple isoforms and should inhibit cell survival mechanisms that involve the RGD domain, FAK phosphorylation and NF-κB activation.  相似文献   

18.

Background

Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.

Methodology/Principal Findings

Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.

Conclusions/Significance

Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.  相似文献   

19.

Background

The Lutheran blood group glycoprotein (Lu), an Ig superfamily (IgSF) transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a major component of basement membranes in various tissues. Previous reports have shown that Lu/B-CAM binding to laminin α5 contributes to sickle cell vaso-occlusion. However, as there are no useful tools such as function-blocking antibodies or drugs, it is unclear how epithelial and sickled red blood cells adhere to laminin α5 via Lu/B-CAM.

Methodology/Principal Findings

In this study, we discovered a function-blocking antibody that inhibits Lu binding to laminin α5 using a unique binding assay on tissue sections. To characterize the function-blocking antibody, we identified the site on Lu/B-CAM recognized by this antibody. The extracellular domain of Lu/B-CAM contains five IgSF domains, D1-D2-D3-D4-D5. The antibody epitope was localized to D2, but not to the D3 domain containing the major part of the laminin α5 binding site. Furthermore, mutagenesis studies showed that Arg175, the LU4 blood group antigenic site, was crucial for forming the epitope and the antibody bound sufficiently close to sterically hinder the interaction with α5. Cell adhesion assay using the antibody also showed that Lu/B-CAM serves as a secondary receptor for the adhesion of carcinoma cells to laminin α5.

Conclusion/Significance

This function-blocking antibody against Lu/B-CAM should be useful for not only investigating cell adhesion to laminin α5 but also for developing drugs to inhibit sickle cell vaso-occlusion.  相似文献   

20.

Background

The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs’ features and their role in tumor development are needed to be further investigated.

Methodology/Principal Findings

We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs.

Conclusions/Significance

CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set of immune associated signaling may be involved in tumor cell immune evasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号