首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.  相似文献   

3.
4.
We present a thorough analysis of the relation between amino acid sequence and local three-dimensional structure in proteins. A library of overlapping local structural prototypes was built using an unsupervised clustering approach called “hybrid protein model” (HPM). The HPM carries out a multiple structural alignment of local folds from a non-redundant protein structure databank encoded into a structural alphabet composed of 16 protein blocks (PBs). Following previous research focusing on the HPM protocol, we have considered gaps in the local structure prototype. This methodology allows to have variable length fragments. Hence, 120 local structure prototypes were obtained. Twenty-five percent of the protein fragments learnt by HPM had gaps.An investigation of tight turns suggested that they are mainly derived from three PB series with precise locations in the HPM. The amino acid information content of the whole conformational classes was tackled by multivariate methods, e.g., canonical correlation analysis. It points out the presence of seven amino acid equivalence classes showing high propensities for preferential local structures. In the same way, definition of “contrast factors” based on sequence-structure properties underline the specificity of certain structural prototypes, e.g., the dependence of Gly or Asn-rich turns to a limited number of PBs, or, the opposition between Pro-rich coils to those enriched in Ser, Thr, Asn and Glu. These results are so useful to analyze the sequence-structure relationships, but could also be used to improve fragment-based method for protein structure prediction from sequence.  相似文献   

5.
Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Vorono? tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.  相似文献   

6.
Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%.  相似文献   

7.
Abstract

Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives. We analysed molecular dynamics to investigate protein flexibility locally, using classical approaches such as RMSf, solvent accessibility, but also innovative approaches such as local entropy. First, we focussed on classical secondary structures and analysed specifically how β-strand, β–turns, and bends evolve during molecular simulations. We underlined interesting specific bias between β–turns and bends, which are considered as the same category, while their dynamics show differences. Second, we used a structural alphabet that is able to approximate every part of the protein structures conformations, namely protein blocks (PBs) to analyse (i) how each initial local protein conformations evolve during dynamics and (ii) if some exchange can exist among these PBs. Interestingly, the results are largely complex than simple regular/rigid and coil/flexible exchange. Abbreviations Neq number of equivalent

PB Protein Blocks

PDB Protein DataBank

RMSf root mean square fluctuations

Communicated by Ramaswamy H. Sarma  相似文献   

8.
9.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   

10.
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (ap) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.  相似文献   

11.
12.
Protein topology can be described at different levels. At the most fundamental level, it is a sequence of secondary structure elements (a "primary topology string"). Searching predicted primary topology strings against a library of strings from known protein structures is the basis of some protein fold recognition methods. Here a method known as TOPSCAN is presented for rapid comparison of protein structures. Rather than a simple two-letter alphabet (encoding strand and helix), more complex alphabets are used encoding direction, proximity, accessibility and length of secondary elements and loops in addition to secondary structure. Comparisons are made between the structural information content of primary topology strings and encodings which contain additional information ("secondary topology strings"). The algorithm is extremely fast, with a scan of a large domain against a library of more than 2000 secondary structure strings completing in approximately 30 s. Analysis of protein fold similarity using TOPSCAN at primary and secondary topology levels is presented.  相似文献   

13.
Protein backbone angle prediction with machine learning approaches   总被引:2,自引:0,他引:2  
MOTIVATION: Protein backbone torsion angle prediction provides useful local structural information that goes beyond conventional three-state (alpha, beta and coil) secondary structure predictions. Accurate prediction of protein backbone torsion angles will substantially improve modeling procedures for local structures of protein sequence segments, especially in modeling loop conformations that do not form regular structures as in alpha-helices or beta-strands. RESULTS: We have devised two novel automated methods in protein backbone conformational state prediction: one method is based on support vector machines (SVMs); the other method combines a standard feed-forward back-propagation artificial neural network (NN) with a local structure-based sequence profile database (LSBSP1). Extensive benchmark experiments demonstrate that both methods have improved the prediction accuracy rate over the previously published methods for conformation state prediction when using an alphabet of three or four states. AVAILABILITY: LSBSP1 and the NN algorithm have been implemented in PrISM.1, which is available from www.columbia.edu/~ay1/. SUPPLEMENTARY INFORMATION: Supplementary data for the SVM method can be downloaded from the Website www.cs.columbia.edu/compbio/backbone.  相似文献   

14.
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results.  相似文献   

15.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

16.
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods.  相似文献   

17.
18.
Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.  相似文献   

19.
J Boberg  T Salakoski  M Vihinen 《Proteins》1992,14(2):265-276
Reliable structural and statistical analyses of three dimensional protein structures should be based on unbiased data. The Protein Data Bank is highly redundant, containing several entries for identical or very similar sequences. A technique was developed for clustering the known structures based on their sequences and contents of alpha- and beta-structures. First, sequences were aligned pairwise. A representative sample of sequences was then obtained by grouping similar sequences together, and selecting a typical representative from each group. The similarity significance threshold needed in the clustering method was found by analyzing similarities of random sequences. Because three dimensional structures for proteins of same structural class are generally more conserved than their sequences, the proteins were clustered also according to their contents of secondary structural elements. The results of these clusterings indicate conservation of alpha- and beta-structures even when sequence similarity is relatively low. An unbiased sample of 103 high resolution structures, representing a wide variety of proteins, was chosen based on the suggestions made by the clustering algorithm. The proteins were divided into structural classes according to their contents and ratios of secondary structural elements. Previous classifications have suffered from subjective view of secondary structures, whereas here the classification was based on backbone geometry. The concise view lead to reclassification of some structures. The representative set of structures facilitates unbiased analyses of relationships between protein sequence, function, and structure as well as of structural characteristics.  相似文献   

20.
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号