首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported (Bauer MK, Breier BH, Bloomfield FH, Jensen EC, Gluckman PD, and Harding JE. J Endocrinol 177: 83-92, 2003) that a chronic pulsatile infusion of growth hormone (GH) to intrauterine growth-restricted (IUGR) ovine fetuses increased fetal circulating IGF-I levels without increasing fetal growth. We hypothesized a cortisol-induced upregulation of fetal hepatic GH receptor (GH-R) mRNA levels, secondary increases in IGF-I mRNA levels, and circulating IGF-I levels, but a downregulation of the type I IGF receptor (IGF-IR) as an explanation. We, therefore, measured mRNA levels of genes of the somatotrophic axis by real-time RT-PCR in fetal and placental tissues of fetuses with IUGR (induced by uteroplacental embolization from 110- to 116-days gestation) that received either a pulsatile infusion of GH (total dose 3.5 mg/day) or vehicle from 117-126 days and in control fetuses (n = 5 per group). Tissues were collected at 127 days (term, 145 days). Fetal cortisol concentrations were significantly increased in IUGR fetuses. However, in liver, GH-R, but not IGF-I or IGF-IR, mRNA levels were decreased in both IUGR groups. In contrast, in placenta, GH-R, IGF-I, and IGF-IR expression were increased in IUGR vehicle-infused fetuses. GH infusion further increased placental GH-R and IGF-IR, but abolished the increase in IGF-I mRNA levels. GH infusion reduced IGF-I expression in muscle and increased GH-R but decreased IGF-IR expression in kidney. IUGR increased hepatic IGF-binding protein (IGFBP)-1 and placental IGFBP-2 and -3 mRNA levels with no further effect of GH infusion. In conclusion, the modest increases in circulating cortisol concentrations in IUGR fetuses did not increase hepatic GH-R mRNA expression and, therefore, do not explain the increased circulating IGF-I levels that we found with GH infusion, which are likely due to reduced clearance rather than increased production. We demonstrate tissue-specific regulation of the somatotrophic axis in IUGR fetuses and a discontinuity between GH-R and IGF-I gene expression in GH-infused fetuses that is not explained by alterations in phosphorylated STAT5b.  相似文献   

2.
In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were approximately 70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.  相似文献   

3.
The roles of polyamines in intrauterine growth restriction (IUGR) is studied. The DL-alpha-difluoromethyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) which is a rate limiting enzyme of polyamine synthesis was administrated to pregnant rats so that we obtained rat fetuses with IUGR. The changes of maternal nutrition, damage of the placenta, and the direct effect of DFMO on the fetus were examined in this IUGR model. Administration of DFMO did not induced changes of maternal nutrition except for triglyceride and the fetal metabolic state. But the placental weight, ODC activity, and DNA in the placenta were decreased significantly. The ODC activity in the total placenta decreased to less than 10% of that of the control. Depression of ODC activity in the placenta may be the major cause of IUGR induced by DFMO administration, and polyamines play important roles to carry pregnancy.  相似文献   

4.
Study of fetal organ growth in Wistar rats from day 17 to 21   总被引:1,自引:0,他引:1  
A total of 1633 Wistar rat fetuses was used to determine weights of the fetus and several fetal organs on days 17 to 21 of gestation. Heart, lung, liver, kidney, stomach, intestine, brain, femur, thyroid and adrenal weights were recorded. Growth curves of the whole body and organs were calculated. A linear semi-log relationship between organ weight and day of gestation was shown. The doubling weight times were 1.5 days for whole bodies and for organs they ranged between 0.9 (spleen) and 3.4 (adrenals) days. A correlation between the rate of organ growth and the start of the organ function was observed.  相似文献   

5.
Uteroplacental tissue plays a key role in substance exchanges between maternal and fetal circulation, and, therefore, in the growth and development of fetuses. In this study, proteomics and western blotting were applied to investigate the changes of proteome in the placenta and endometrium of normal and intrauterine growth restriction (IUGR) porcine fetuses during mid to late pregnancy (D60, 90, and 110 of gestation). Our results showed that proteins participating in cell structure, energy metabolism, stress response, cell turnover, as well as transport and metabolism of nutrients were differentially expressed in placenta and endometrium between normal and IUGR fetuses. Analysis of functions of these proteins suggests reductions in ATP production and nutrients transport, increases in oxidative stress and apoptosis, and impairment of cell metabolism in IUGR fetuses. Collectively, our findings aid in understanding of the mechanisms responsible for uteroplacental dysfunction in IUGR fetus, and are expected to provide new strategies to reduce fetal growth restriction in pigs and other mammals.  相似文献   

6.
The normal growth profile of critical fetal organs through the last third of gestation has not been documented in detail in human fetuses or the fetus of any nonhuman primate species. Recent epidemiological studies in human pregnancy suggest that fetal growth plays a major role in the programming of life-long health by modifying cardiovascular, pancreatic, brain, and liver growth. The present study aimed to produce a detailed database of individual organ growth in the fetal baboon in late gestation. Fetal organ weights were obtained from 43 baboon fetuses between 121 and 177 days of gestation. Various organs (brain, heart, kidney, femur, intestines, and spinal cord) showed no sign of slowed growth in late gestation while growth of others (lung, liver, stomach, and bladder) accelerated in late gestation. The fetal adrenal and thymus showed a decrease in growth rate over the final 20 and 10 days of gestation respectively. These observations provide a database that will permit analysis of factors responsible for regulation of normal and altered fetal organ development in this important experimental species.  相似文献   

7.
This study was designed to quantitate the effects of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DIC) and 5-(3,3-bis(2-chlorethyl)-1-triazeno)-imidazole-4-carboxamide (BIC) on growth and selected components of rat fetal organs. Twelve-day pregnant rats were given single intraperitoneal injections of 600 mg/kg of DIC and 900 mg/kg of BIC and autopsied on day 21 of gestation. Fetal liver, brain, kidney, and placenta were removed, weighed, and assayed for total DNA, RNA, and protein. DIC significantly reduced weight, total DNA, RNA, and protein of all four fetal organs as compared to age-matched controls. The brain was most severely affected by this compound. BIC also significantly reduced weight, DNA, RNA, and protein of fetal brain, kidney, and placenta, but in fetal liver only weight and total protein were significantly depressed, while DNA and RNA remained essentially unchanged. The effect of BIC was maximal on the placenta.  相似文献   

8.
Mouse placenta is a major hematopoietic organ   总被引:6,自引:0,他引:6  
Placenta and yolk sac from 8- to 17-day-old (E8-E17) mouse embryos/fetuses were investigated for the presence of in vitro clonogenic progenitors. At E8-E9, the embryonic body from the umbilicus caudalwards was also analysed. Fetal liver was analysed beginning on E10. At E8, between five and nine somite pairs (sp), placenta, yolk sac and embryonic body yielded no progenitors. The first progenitors appeared at E8.5 at the stage of 15 sp in the yolk sac, 18 sp in the embryonic body, 20 sp in the placenta and only at E12 in the fetal liver (absent at E10, at E11 not determined). Progenitors with a high proliferation potential that could be replated for two months, as well as the whole range of myeloid progenitors, were found at all stages in all organs. However, the earliest of these progenitors (these yielding large, multilineage colonies) were 2-4 times more frequent in the placenta than in the yolk sac or fetal liver. In the fetal liver, late progenitors were more frequent and the cellularity increased steeply with developmental age. Thus, the fetal liver, which is a recognized site for amplification and commitment, has a very different hematopoietic developmental profile from placenta or yolk sac. Placentas were obtained from GFP transgenic embryos in which only the embryonic contribution expressed the transgene. 80% of the colonies derived from these placental cells were GFP+, and so originated from the fetal component of the placenta. These data point to the placenta as a major hematopoietic organ that is active during most of pregnancy.  相似文献   

9.
Placental insufficiency, resulting in restriction of fetal substrate supply, is a major cause of intrauterine growth restriction (IUGR) and increased neonatal morbidity. Fetal adaptations to placental restriction maintain the growth of key organs, including the heart, but the impact of these adaptations on individual cardiomyocytes is unknown. Placental and hence fetal growth restriction was induced in fetal sheep by removing the majority of caruncles in the ewe before mating (placental restriction, PR). Vascular surgery was performed on 13 control and 11 PR fetuses at 110-125 days of gestation (term: 150 +/- 3 days). PR fetuses with a mean gestational Po(2) < 17 mmHg were defined as hypoxic. At postmortem (<135 or >135 days), fetal hearts were collected, and cardiomyocytes were isolated and fixed. Proliferating cardiomyocytes were counted by immunohistochemistry of Ki67 protein. Cardiomyocytes were stained with methylene blue to visualize the nuclei, and the proportion of mononucleated cells and length and width of cardiomyocytes were measured. PR resulted in chronic fetal hypoxia, IUGR, and elevated plasma cortisol concentrations. Although there was no difference in relative heart weights between control and PR fetuses, there was an increase in the proportion of mononucleated cardiomyocytes in PR fetuses. Whereas mononucleated and binucleated cardiomyocytes were smaller, the relative size of cardiomyocytes when expressed relative to heart weight was larger in PR compared with control fetuses. The increase in the relative proportion of mononucleated cardiomyocytes and the relative sparing of the growth of individual cardiomyocytes in the growth-restricted fetus are adaptations that may have long-term consequences for heart development in postnatal life.  相似文献   

10.
Background  A sub-optimal intrauterine environment alters the trajectory of fetal development with profound effects on life-time health. Altered methylation, a proposed epigenetic mechanism responsible for these changes, has been studied in non-primate species but not nonhuman primates. We tested the hypotheses that global methylation in fetal baboon demonstrates organ specificity, gestational age specificity, and changes with maternal nutritional status.
Methods  We measured global DNA methylation in fetuses of control fed (CTR) and nutrient restricted mothers fed 70% of controls (MNR) for brain, kidney, liver and heart at 0.5 and 0.9 gestation (G).
Results  We observed organ and gestation specific changes that were modified by maternal diet. Methylation in CTR fetuses was highest in frontal cortex and lowest in liver. MNR decreased methylation in 0.5G kidney and increased methylation in 0.9G kidney and frontal cortex.
Conclusion  These results demonstrate a potential epigenetic mechanism whereby reduced maternal nutrition has long-term programming effects on fetal organ development.  相似文献   

11.
Maternal cigarette smoking is considered an important risk factor associated with fetal intrauterine growth restriction (IUGR). Polycyclic aromatic hydrocarbons (PAHs) are well-known constituents of cigarette smoke, and the effects of acute exposure to these chemicals at different gestational stages have been well established in a variety of laboratory animals. In addition, many PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a cellular xenobiotic sensor responsible for activating the metabolic machinery. In this study, we have applied a chronic, low-dose regimen of PAH exposure to C57Bl/6 female mice before conception. This treatment caused IUGR in day 15.5 post coitum (d15.5) fetuses and yielded abnormalities in the placental vasculature, resulting in significantly reduced arterial surface area and volume of the fetal arterial vasculature of the placenta. However, examination of the small vasculature within the placental labyrinth of PAH-exposed dams revealed extensive branching and enlargement of these vessels, indicating a possible compensatory mechanism. These alterations in vascularization were accompanied by reduced placental cell death rates, increased expression levels of antiapoptotic Xiap, and decreased expression of proapoptotic Bax, cleaved poly(ADP-ribose) polymerase-1, and active caspase-3. AhR-deficient fetuses were rescued from PAH-induced growth restriction and exhibited no changes in the labyrinthine cell death rate. The results of this investigation suggest that chronic exposure to PAHs is a contributing factor to the development of IUGR in human smokers and that the AhR pathway is involved.  相似文献   

12.
Hepatocyte growth factor (HGF) is a mesenchymal-derived factor which induces mitosis, cell movement and morphogenesis of tissue-like structure. We analyzed changes in HGF mRNA and its receptor, the c-met proto-oncogene product, in the liver, kidney and lung during late fetal and postnatal development in rats. In the liver, the HGF-mRNA level was very low during late gestation and in neonates, it increased remarkably and reached a maximum two weeks postnatally, to be followed by a decrease to 33% of the maximum. HGF mRNA in the kidney and lung was either undetectable or very low during late gestation and the neonatal period and increased markedly to reach a maximum, respectively, 3-4 weeks postnatally. HGF-mRNA level in the adult rat lung was fivefold higher than that in the liver and kidney. The number of HGF receptors on plasma membranes of these tissues was low in neonates but there was a rapid increase after birth and a maximum was reached within three weeks. The number of HGF receptors/ng plasma membrane protein at the maximal level was highest in the liver and lowest in the lung. c-met/HGF-receptor mRNA in the liver was also low during late-gestation or in early neonatal periods and increased postnatally. Since HGF-mRNA and HGF-receptor levels changed differently in liver, kidney and lung, the expression of HGF and its receptor may be independently regulated in each organ. However, in these organs, HGF mRNA and the HGF receptor increased within a few weeks of birth, HGF may play roles in organ growth, organ maturation and the maintenance of tissue homeostasis during the postnatal period, presumably through its potential to act as mitogen, motogen and morphogen.  相似文献   

13.
The sex-specific divergence of antioxidant pathways in fetal organs of opposite-sex twin is unknown and remains urgently in need of investigation. Such study faces many challenges, mainly the ethical impossibility of obtaining human fetal organs. Opposite-sex sheep twins represent a unique model for studying a sex dimorphism for antioxidant systems. The activity of total superoxide dismutase (SOD), SOD1, SOD2, glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT), the content of total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured in brain, lung, liver, kidney, and skeletal muscles of female and male fetuses collected from sheep twin pregnancies at day 65 of gestation. Lipid peroxidation was assessed by measuring melondialdehyde (MDA) tissue content. Male brain has greater total SOD and SOD1 activities than female brain. Female liver has greater SOD2 activity than male liver. Male liver has greater GR activity than female liver. Male liver has higher total GSH and GSSG content than female liver. Male skeletal muscles have higher total GSH, GSH, and GSSG content than female skeletal muscles. Female brain and liver have higher MDA content than male brain and liver. This is the first report of a sex dimorphism for fetal organ antioxidative pathways. Brain, liver, and skeletal muscles of male and female fetuses display distinct antioxidant pathways. Such sexually dimorphic responses to early life oxidative stress might be involved in the sex-related difference in fetal development that may have a long-term effect on offspring. Our study urges researchers to take into consideration the importance of sex as a biologic variable in their investigations.  相似文献   

14.
This investigation was performed to define certain characteristics of insulin-receptor interaction during the last 2 months of gestation in fetal sheep liver and kidney. Twenty-one sheep carrying a total of 46 fetuses were sacrificed at various gestational ages from 94 days to term; fetal and maternal livers and kidneys were analyzed by a radioreceptor assay for insulin binding characteristics. Specific binding of insulin to partially purified ovine fetal liver and kidney plasma membranes increased as gestation approached term, at which time specific binding was two- to fourfold greater to fetal than to maternal tissues. Associated with increased specific binding were late gestational increases in affinity of insulin for receptors in both fetal liver and kidney and an earlier increase in insulin receptor concentration in fetal kidney. These observations in fetal sheep liver and kidney are similar to reported observations in other species. However, the increase in specific binding of insulin to male fetal liver membranes was exponential; in contrast, there was no apparent increase in specific binding to female fetal liver membranes during the gestational interval surveyed. Both the weights and the vertebral column lengths of these fetuses were shown by multivariate analysis to be significantly affected by the interaction between specific binding of insulin and fetal sex. However, in 30 additional sheep fetuses we observed no difference between male and female fetuses in the increase with time in liver glycogen content. The lack of sex difference in this postreceptor event is consonant with the demonstrated dissociation between liver insulin receptors and glycogen synthesis in the late fetal rat. Our observations suggest that late gestational differences between male and female sheep fetuses in insulin specific binding to liver and, possibly, to other tissues such as cartilage, muscle, and/or fat, that are coupled to postreceptor events may account for differences in fetal growth between the sexes.  相似文献   

15.
Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.  相似文献   

16.
Pregnant Wistar rats were fed a fatfree diet from day 16--22 of pregnancy. On day 22, the fatty acid components of cholesterol esters, triglycerides, free fatty acids and phospholipids of maternal (brain, muscle, serum, white adipose tissue, liver) and fetal (brain, carcass, serum, liver) tissues, including the placenta, were examined gaschromatographically for the participation of linoleic and arachidonic acid. In all fetal and maternal organs the linoleic acid levels in the fatty acid patterns were strongly reduced. The alterations nearly always involved all the lipid fractions of a tissue and were mostly equal within a tissue. The strongest decreases of linoleic acid occurred in the placenta, and the weakest, in the lipids of maternal muscle and maternal adipose tissue. The linoleic acid alterations were principally similar in fetal and the corresponding maternal tissues, while being less pronounced in case of maternal muscle. The participation of arachidonic acid in the fatty acid pattern is completely retained in the lipids of fetal organs, and is even enhanced in those of the placenta.  相似文献   

17.
Blood flow to the placenta and lower body of control and growth retarded (IUGR) guinea pig fetuses was measured between 60-64 days of pregnancy by the microsphere technique. Further information about the hepatic blood supply and its interlobular distribution was obtained by injecting microspheres into the umbilical vein and a branch of the portal vein. Liver weight was reduced by 60% in IUGR fetuses from 5.0 +/- 0.2 to 2.0 +/- 0.1 g, compared to a decrease in body weight of 50% from 91.6 +/- 3.0 to 45.4 +/- 2.6 g. In addition, there was a proportionately greater reduction in the size of the right liver lobe. Umbilical blood flow was 10.8 +/- 1.0 ml min-1 in control fetuses and 4.9 +/- 1.2 ml.min-1 in IUGR fetuses, whilst blood flow in the portal vein was reduced from 1.4 +/- 0.1 to 0.8 +/- 0.3 ml min-1 and that in the hepatic artery from 0.6 +/- 0.1 to 0.3 +/- 0.1 ml.min-1. Since ductus venosus flow was absent or negligible, the umbilical venous return accounted for greater than 80% of the hepatic blood supply in both control and IUGR fetuses. Blood flows were, however, unequally distributed between the liver lobes. The right lobe was supplied mainly by the portal vein in IUGR fetuses as well as the controls, and received less than 6% of the umbilical venous return. No significant change occurred in total liver perfusion, which was 2.8 +/- 0.2 ml min-1 per g in control fetuses and 2.6 +/- 0.4 ml min-1 per g in IUGR fetuses. It is therefore suggested that a high rate of liver metabolism is maintained in IUGR, but by a smaller tissue mass, and that the rate of umbilical blood flow may be one factor determining the size of the liver. The relatively greater reduction in size of the right lobe in IUGR is probably the result of poor oxygenation of the portal venous blood.  相似文献   

18.
Zhang X  Zhang SL  Xiong HY  DU YH  Quan L  Yang J  Ma XR  Liu HR 《生理学报》2011,63(2):149-154
血管紧张素AT1受体抗体(AT1-Ab)可损伤胎盘发育,进而导致胎儿宫内生长受限(intrauterine growth restriction,IUGR).根据胎儿源性成人疾病学说,IUGR会明显增加成人后患心血管疾病的几率.本研究旨在观察AT1-Ab阳性孕鼠后代生长至成年后血管功能有无异常.24只雌性Wistar大...  相似文献   

19.
The fetus/neonate with intrauterine growth restriction (IUGR) has a high perinatal mortality and morbidity rate, as well as reduced efficiency for nutrients utilization. Our previous studies showed alterations of intestinal proteome in IUGR piglets both at birth and during the nursing period. Considering the potential long-term impacts of fetal programming and substantial increases in amounts of amniotic fluid nutrients from mid-gestation in pigs, the present study involved IUGR porcine fetuses from days 60 to 110 of gestation (mid to late gestation). We identified 59 differentially expressed proteins in the fetal small intestine that are related to intestinal growth, development and reprogramming. Our results further indicated increased abundances of proteins and enzymes associated with oxidative stress, apoptosis and protein degradation, as well as decreased abundances of proteins that are required for maintenance of cell structure and motility, absorption and transport of nutrients, energy metabolism, and protein synthesis in the fetal gut. Moreover, IUGR from middle to late gestation was associated with reduced expression of intestinal proteins that participate in regulation of gene expression and signal transduction. Collectively, these findings provide the first evidence for altered proteomes in the small intestine of IUGR fetuses, thereby predisposing the gut to metabolic defects during gestation and neonatal periods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号