首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kingella kingae is a gram-negative bacterium that colonizes the respiratory tract and is a common cause of septic arthritis and osteomyelitis. Despite the increasing frequency of K. kingae disease, little is known about the mechanism by which this organism adheres to respiratory epithelium and seeds joints and bones. Previous work showed that K. kingae expresses long surface fibers that vary in surface density. In the current study, we found that these fibers are type IV pili and are necessary for efficient adherence to respiratory epithelial and synovial cells and that the number of pili expressed by the bacterium correlates with the level of adherence to synovial cells but not with the level of adherence to respiratory cells. In addition, we established that the major pilin subunit is encoded by a pilA homolog in a conserved region of the chromosome that also contains a second pilin gene and a type IV pilus accessory gene, both of which are dispensable for pilus assembly and pilus-mediated adherence. Upon examination of the K. kingae genome, we identified two genes in physically separate locations on the chromosome that encode homologs of the Neisseria PilC proteins and that have only a low level homology to each other. Examination of mutant strains revealed that both of the K. kingae PilC homologs are essential for a wild-type level of adherence to both respiratory epithelial and synovial cells. Taken together, these results demonstrate that type IV pili and the two PilC homologs play important roles in mediating K. kingae adherence.  相似文献   

2.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

3.
The product of the Neisseria gonorrhoeae omc gene possesses regions homologous to those found in members of a protein superfamily that are associated with the translocation of proteins and DNA-protein complexes across the outer membrane. Amongst its protein homologues, Omc has higher overall homology to PilQ, which is required for type IV pilus expression in Pseudomonas aeruginosa , and OrfE, which is required for sequence-specific DNA uptake by Haemophilus influenzae . The function of Omc, however, is unknown and gonococcal omc mutants have not been described. We constructed gonococcal mutants expressing truncated forms of the protein, and found that these mutants are severely defective for both pilus expression and competence for natural transformation. To be consistent with pre-existing pilus gene nomenclature, we have redesignated the gene pilQ instead of omc , and its product, PilQ instead of Omc. The MS11 gene was sequenced and found to differ from the DNA sequence reported for that of another gonococcal strain; these differences were associated with a repeated DNA element, suggesting a genetic basis for structural variation in PilQ. The results also show that PilQ mutants are distinct from previously described gonococcal pilus-assembly mutants and P. aeruginosa PilQ mutants by virtue of their expression of rare pilus filaments. Taking these data into account, PilQ is proposed to function in the terminal steps of organelle biogenesis by acting as a pilus channel or pore.  相似文献   

4.
5.
The Neisseria gonorrhoeae type IV pilus is a retractile appendage that can generate forces near 100 pN. We tested the hypothesis that type IV pilus retraction influences epithelial cell gene expression by exerting tension on the host membrane. Wild-type and retraction-defective bacteria altered the expression of an identical set of epithelial cell genes during attachment. Interestingly, pilus retraction, per se, did not regulate novel gene expression but, rather, enhanced the expression of a subset of the infection-regulated genes. This is accomplished through mitogen-activated protein kinase activation and at least one other undefined stress-activated pathway. These results can be reproduced by applying artificial force on the epithelial membrane, using a magnet and magnetic beads. Importantly, this retraction-mediated signaling increases the ability of the cell to withstand apoptotic signals triggered by infection. We conclude that pilus retraction stimulates mechanosensitive pathways that enhance the expression of stress-responsive genes and activate cytoprotective signaling. A model for the role of pilus retraction in influencing host cell survival is presented.  相似文献   

6.
C4b-binding protein (C4BP) is an important plasma inhibitor of the classical pathway of complement activation. Several bacterial pathogens bind C4BP, which may contribute to their virulence. In the present report we demonstrate that isolated type IV pili from Neisseria gonorrhoeae bind human C4BP in a dose-dependent and saturable manner. C4BP consists of seven identical alpha-chains and one beta-chain linked together with disulfide bridges. We found that pili bind to the alpha-chain of C4BP, which is composed of eight homologous complement control protein (CCP) domains. From the results of an inhibition assay with C4b and a competition assay in which we tested mutants of C4BP lacking individual CCPs, we concluded that the binding area for pili is localized to CCP1 and CCP2 of the alpha-chain. The binding between pili and C4BP was abolished at 0.25 M NaCl, implying that it is based mostly on ionic interactions, similarly to what have been observed for C4b-C4BP binding. Furthermore, the N-terminal part of PilC, a structural component of pili, appeared to be responsible for binding of C4BP. Membrane cofactor protein, previously shown to be a receptor for pathogenic N. gonorrhoeae on the surface of epithelial cells, competed with C4BP for binding to pili only at high concentrations, suggesting that different parts of pili are involved in these two interactions. Accordingly, high concentrations of C4BP were required to inhibit binding of N. gonorrhoeae to Chang conjunctiva cells, and no inhibition of binding was observed with cervical epithelial cells.  相似文献   

7.
An indigenous Neisseria gonorrhoeae conjugative plasmid, pLE2450, was tested for its ability to mediate chromosomal gene transfer between gonococcal strains. Plasmid-mediated chromosomal transfer was detected at a low frequency and can be used to establish certain linkage relationships between amino acid and antibiotic resistance markers.  相似文献   

8.
Transferrin (TF) and lactoferrin (LF) are probably the major sources of iron (Fe) for Neisseria gonorrhoeae in vivo. We isolated mutants of N. gonorrhoeae FA19 that were unable to grow with Fe bound to either TF (TF-) or LF (LF-) or to both TF and LF ([TF LF]-). The amount of Fe internalized by each of the mutants was reduced to background levels from the relevant iron source(s). The wild-type parent strain exhibited saturable specific binding of TF and LF; receptor activity was induced by Fe starvation. The TF(-)-specific or LF(-)-specific mutants were almost completely lacking in receptor activity for TF or LF, respectively, whereas the [TF LF]- mutants bound both TF and LF as well as the wild-type strain. All mutants utilized citrate and heme normally as Fe sources. These results demonstrate that ability to bind TF or LF is essential for gonococci to scavenge appreciable amounts of Fe from these sources in vitro. In addition, the TF and LF Fe acquisition pathways are linked by the mutual use of a nonreceptor gene product that is essential to Fe scavenging from both of these sources; this gene product is not required for Fe acquisition from other sources.  相似文献   

9.
10.
The zwitterionic phospho-forms phosphoethanolamine and phosphocholine are recognized as influential and important substituents of pathogen cell surfaces. PilE, the major pilin subunit protein of the type IV pilus (Tfp) colonization factor of Neisseria gonorrhoeae undergoes unique, post-translational modifications with these moieties. These phospho-form modifications have been shown to be O-linked alternately to a specific, conserved serine residue of PilE. However, the enzymes and precursors involved in their addition are unknown, and the full spectrum of PilE post-translational modifications has yet to be defined. Here, an intact protein-based mass spectrometric approach was integrated with bioinformatics and reverse genetics to address these matters. Specifically we show that a protein limited in its distribution to pathogenic Neisseria species and structurally related to enzymes implicated in phosphoethanolamine modification of lipopolysaccharide is necessary for PilE covalent modification with phosphoethanolamine and phosphocholine. These findings strongly suggest that protein phospho-form modification is mechanistically similar to processes underlying analogous modifications of prokaryotic saccharolipid glycans. We also show that PilE undergoes multisite and hierarchical phospho-form modifications and that the stoichiometries of site occupancy can be influenced by PilE primary structure and the abundance of the pilin-like protein PilV. Together, these findings have important implications for the structure and antigenicity of PilE.  相似文献   

11.
12.
Type IV pili are cell surface organelles found on many Gram-negative bacteria. They mediate a variety of functions, including adhesion, twitching motility, and competence for DNA uptake. The type IV pilus is a helical polymer of pilin protein subunits and is capable of rapid polymerization or depolymerization, generating large motor forces in the process. Here we show that a specific interaction between the outer membrane secretin PilQ and the type IV pilus fiber can be detected by far-Western analysis and sucrose density gradient centrifugation. Transmission electron microscopy of preparations of purified pili, to which the purified PilQ oligomer had been added, showed that PilQ was uniquely located at one end of the pilus fiber, effectively forming a "mallet-type" structure. Determination of the three-dimensional structure of the PilQ-type IV pilus complex at 26-angstroms resolution showed that the cavity within the protein complex was filled. Comparison with a previously determined structure of PilQ at 12-angstroms resolution indicated that binding of the pilus fiber induced a dissociation of the "cap" feature and lateral movement of the "arms" of the PilQ oligomer. The results demonstrate that the PilQ structure exhibits a dynamic response to the binding of its transported substrate and suggest that the secretin could play an active role in type IV pilus assembly as well as secretion.  相似文献   

13.
14.
We have recently described the expression of two pili of different lengths on the surface of Legionella pneumophila (B. J. Stone and Y. Abu Kwaik, Infect. Immun. 66:1768-1775, 1998). Production of long pili requires a functional pilEL locus, encoding a type IV pilin protein. Since type IV pili in Neisseria gonorrhoeae are associated with competence for DNA transformation, we examined the competence of L. pneumophila for DNA transformation under conditions that allowed the expression of type IV pili. We show that L. pneumophila is naturally competent for DNA transformation by isogenic chromosomal DNA and by plasmid DNA containing L. pneumophila DNA. Many different L. pneumophila loci are able to transform L. pneumophila after addition of plasmid DNA, including gspA, ppa, asd, and pilEL. The transformation frequency is reduced when competing DNA containing either L. pneumophila DNA or vector sequences is added to the bacteria, suggesting that uptake-specific sequences may not be involved in DNA uptake. Competence for DNA transformation correlates with expression of the type IV pili, and a pilEL mutant defective in expression of type IV pili is not competent for DNA transformation. Complementation of the mutant for competence is restored by the reintroduction of a cosmid that restores production of type IV pili. Minimal competence is restored to the mutant by introduction of pilEL alone. We conclude that competence for DNA transformation in L. pneumophila is associated with expression of the type IV pilus and results in recombination of L. pneumophila DNA into the chromosome. Since expression of type IV pili also facilitates attachment of L. pneumophila to mammalian cells and protozoa, we designated the type IV pili CAP (for competence- and adherence-associated pili).  相似文献   

15.
Intracellular pathogens exploit host cell functions to create a replication niche inside eukaryotic cells. The causative agent of Legionnaires' disease, the gamma-proteobacterium Legionella pneumophila, resides and replicates within a modified vacuole of protozoan and mammalian cells. L. pneumophila translocates effector proteins into host cells through the Icm-Dot complex, a specialized type IVB secretion system that is required for intracellular growth. To find out if some effector proteins may have been acquired through interdomain horizontal gene transfer (HGT), we performed a bioinformatic screen that searched for eukaryotic motifs in all open reading frames of the L. pneumophila Philadelphia-1 genome. We found 44 uncharacterized genes with many distinct eukaryotic motifs. Most of these genes contain G+C biases compared to other L. pneumophila genes, supporting the theory that they were acquired through HGT. Furthermore, we found that several of them are expressed and up-regulated in stationary phase in an RpoS-dependent manner. In addition, at least seven of these gene products are translocated into host cells via the Icm-Dot complex, confirming their role in the intracellular environment. Reminiscent of the case with most Icm-Dot substrates, most of the strains containing mutations in these genes grew comparably to the parent strain intracellularly. Our findings suggest that in L. pneumophila, interdomain HGT may have been a major mechanism for the acquisition of determinants of infection.  相似文献   

16.
A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer.   总被引:3,自引:0,他引:3  
The efficient release of nonviral gene carriers from endosomes is an important step for the successful delivery of DNA into the cell nucleus. A synthetic pH-sensitive anionic polymer, poly(propylacrylic acid) (PPAA), was designed to aid in endosomal escape of nonviral vectors and improve the transfection efficiencies with these vectors. Transfection of NIH3T3 fibroblasts with ternary physical mixtures of the cationic lipid DOTAP, pCMVbeta plasmid DNA, and PPAA showed marked enhancement of both gene expression levels and fraction of cells transfected compared to binary control mixtures of DOTAP and DNA. PPAA also significantly improved the serum-stability of DOTAP/DNA vectors. The DOTAP/DNA/PPAA vectors maintained high levels of transfection in media containing up to 50% serum. The striking enhancement of transfection efficiency with cationic lipid/DNA/PPAA mixtures, along with the enhanced serum-stability, suggests that PPAA may provide significant improvements for the in vivo intracellular delivery of drugs such as DNA, oligonucleotides, proteins, and peptides.  相似文献   

17.
The Dutch elm disease fungus Ophiostoma novo-ulmi, which has destroyed billions of elm trees worldwide, originally invaded Europe as a series of clonal populations with a single mating type (MAT-2) and a single vegetative incompatibility (vic) type. The populations then rapidly became diverse with the appearance of the MAT-1 type and many vegetative incompatibility types. Here, we have investigated the mechanism using isolates from sites in Portugal at which the rapid evolution of O. novo-ulmi populations from clonality to heterogeneity was well established. We show by genetic mapping of vic and MAT loci with AFLP markers and by sequence analysis of MAT loci that this diversification was due to selective acquisition by O. novo-ulmi of the MAT-1 and vic loci from another species, Ophiostoma ulmi. A global survey showed that interspecies transfer of the MAT-1 locus occurred on many occasions as O. novo-ulmi spread across the world. We discuss the possibility that fixation of the MAT-1 and vic loci occurred in response to spread of deleterious viruses in the originally clonal populations. The process demonstrates the potential of interspecies gene transfer for facilitating rapid adaptation of invasive organisms to a new environment.  相似文献   

18.
The expression of type IV pili (Tfp) by Neisseria gonorrhoeae has been shown to be essential for natural genetic transformation at the level of sequence-specific uptake of DNA. All previously characterized mutants defective in this step of transformation either lack Tfp or are altered in the expression of Tfp-associated properties, such as twitching motility, autoagglutination and the ability to bind to human epithelial cells. To examine the basis for this relationship, we identified potential genes encoding polypeptides sharing structural similarities to PilE, the Tfp subunit, within the N. gonorrhoeae genome sequence database. We found that disruption of one such gene, designated comP (for competence-associated prepilin), leads to a severe defect in the capacity to take up DNA in a sequence-specific manner, but does not alter Tfp biogenesis or expression of the Tfp-associated properties of auto-agglutination, twitching motility and human epithelial cell adherence. Indirect evidence based on immunodetection suggests that ComP is expressed at very low levels relative to that of PilE. The process of DNA uptake in gonococci, therefore, is now known to require the expression of at least three distinct components: Tfp, the recently identified PilT protein and ComP.  相似文献   

19.
Bacteria use type IV secretion systems (T4SS) to translocate DNA (T-DNA) and protein substrates across the cell envelope. By transfer DNA immunoprecipitation (TrIP), we recently showed that T-DNA translocates through the Agrobacterium tumefaciens VirB/D4 T4SS by forming close contacts sequentially with the VirD4 receptor, VirB11 ATPase, the inner membrane subunits VirB6 and VirB8 and, finally, VirB2 pilin and VirB9. Here, by TrIP, we show that nucleoside triphosphate binding site (Walker A motif) mutations do not disrupt VirD4 substrate binding or transfer to VirB11, suggesting that these early reactions proceed independently of ATP binding or hydrolysis. In contrast, VirD4, VirB11 and VirB4 Walker A mutations each arrest substrate transfer to VirB6 and VirB8, suggesting that these subunits energize this transfer reaction by an ATP-dependent mechanism. By co-immunoprecipitation, we supply evidence for VirD4 interactions with VirB4 and VirB11 independently of other T4SS subunits or intact Walker A motifs, and with the bitopic inner membrane subunit VirB10. We reconstituted substrate transfer from VirD4 to VirB11 and to VirB6 and VirB8 by co-synthesis of previously identified 'core' components of the VirB/D4 T4SS. Our findings define genetic requirements for DNA substrate binding and the early transfer reactions of a bacterial type IV translocation pathway.  相似文献   

20.
We developed a versatile, efficient genetic transfer method for Synechococcus sp. strains PCC 7942 and PCC 6301 that exceeds natural transformation efficiencies by orders of magnitude. As a test case, we complemented a histidine auxotroph and identified a hisS homolog of PCC 7942 as the complementing gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号