首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kidney filtration barrier consists of the capillary endothelium, the glomerular basement membrane and the slit diaphragm localized between foot processes of neighbouring podocytes. We report that collagen XVII, a transmembrane molecule known to be required for epithelial adhesion, is expressed in podocytes of normal human and mouse kidneys and in endothelial cells of the glomerular filtration barrier. Immunoelectron microscopy has revealed that collagen XVII is localized in foot processes of podocytes and in the glomerular basement membrane. Its role in kidney has been analysed in knockout mice, which survive to birth but have high neonatal mortality and skin blistering and structural abnormalities in their glomeruli. Morphometric analysis has shown increases in glomerular volume fraction and surface densities of knockout kidneys, indicating an increased glomerular amount in the cortex. Collagen XVII deficiency causes effacement of podocyte foot processes; however, major slit diaphragm disruptions have not been detected. The glomerular basement membrane is split in areas in which glomerular and endothelial basement membranes meet. Differences in the expression of collagen IV, integrins α3 or β1, laminin α5 and nephrin have not been observed in mutant mice compared with controls. We propose that collagen XVII has a function in the attachment of podocyte foot processes to the glomerular basement membrane. It probably contributes to podocyte maturation and might have a role in glomerular filtration.  相似文献   

2.
《Autophagy》2013,9(2):271-272
Within the kidneys, podocytes are highly specialized postmitotic cells. Podocytes, together with endothelial cells and the glomerular basement membrane (GBM), maintain the filtration barrier and the normal structure of the glomerular capillary, are involved in the remodeling of the GBM and the endocytosis of filtered proteins, and counteract intracapillary hydrostatic pressure. The (pro)renin receptor [(P)RR], as ATP6AP2, is an accessory subunit of the vacuolar H+-ATPase, implying more fundamental developmental functions for the (pro)renin receptor in addition to its role in activating the local renin-angiotensin system, and is also expressed in podocytes, where it is involved in both tissue angiotensin II production and (P)RR-mediated intracellular signaling. Overexpression of human (P)RR in rats caused slowly progressive proteinuria and glomerular sclerosis, which suggests that (P)RR-mediated signaling is involved in the development of glomerular diseases. However, the physiological role of the (P)RR in podocytes has not yet been fully understood.  相似文献   

3.
Ichihara A 《Autophagy》2012,8(2):271-272
Within the kidneys, podocytes are highly specialized postmitotic cells. Podocytes, together with endothelial cells and the glomerular basement membrane (GBM), maintain the filtration barrier and the normal structure of the glomerular capillary, are involved in the remodeling of the GBM and the endocytosis of filtered proteins, and counteract intracapillary hydrostatic pressure. The (pro)renin receptor [(P)RR], as ATP6AP2, is an accessory subunit of the vacuolar H (+) -ATPase, implying more fundamental developmental functions for the (pro)renin receptor in addition to its role in activating the local renin-angiotensin system, and is also expressed in podocytes, where it is involved in both tissue angiotensin II production and (P)RR-mediated intracellular signaling. Overexpression of human (P)RR in rats caused slowly progressive proteinuria and glomerular sclerosis, which suggests that (P)RR-mediated signaling is involved in the development of glomerular diseases. However, the physiological role of the (P)RR in podocytes has not yet been fully understood.  相似文献   

4.
In some capillary beds, pericytes regulate endothelial growth. Capillaries with high filtration capacity, such as those in renal glomeruli, lack pericytes. Glomerular endothelium lies adjacent to visceral epithelial cells (podocytes) that are anchored to and cover the anti-luminal surface of the basement membrane. We have tested the hypothesis that podocytes can function as endothelial supporting cells. Endothelial cells were outgrown from circulating endothelial progenitors of normal subjects and were extensively characterized. These blood outgrowth endothelial cells (BOECs) expressed endothelial markers, lacked stem cell markers, and expressed the angiopoietin-1 receptor, Tie-2, and the vascular endothelial growth factor (VEGF) receptor, Flk-1. Differentiated podocytes in culture expressed and secreted VEGF, which was upregulated 4.5-fold by high glucose. In complete medium, BOECs formed thin cell-cell connections and multicellular tubes on Matrigel, the in vitro correlate of angiogenesis. This was impaired in deficient media but rescued by co-incubation with Transwell Anopore inserts containing differentiated podocytes. To assess whether VEGF was the major podocyte-derived signal that rescued BOEC angiogenesis, we examined angiogenesis of control and Flk-1-deficient BOECs. Co-incubation with podocytes or addition of recombinant VEGF each rescued angiogenesis in control BOECs, but both failed to support maintenance and angiogenesis in Flk-1-deficient BOECs. Finally, co-culture with podocytes increased BOEC-proliferation. In concert, these findings suggest a model in which glomerular visceral epithelial cells function as pericyte-like endothelial supporting cells. Podocyte-derived VEGF is a required and sufficient regulator of vascular endothelial maintenance, and its upregulation in podocytes by high glucose may be the mechanism for the increased glomerular angiogenesis that is observed in vivo in early diabetic glomerular injury. These studies were supported by grants from the National Institutes of Health (NIH-NIDDK 63360) and the Juvenile Diabetes Research Foundation (JDRF-1-2004-78).  相似文献   

5.
The glomerular filtration barrier consists of endothelial cells, the glomerular basement membrane, and podocytes. The membrane is a highly crosslinked macromolecular meshwork composed of specific extracellular matrix proteins. The adjacent foot processes of podocytes are bridged along their basolateral surfaces by a slit diaphragm (a porous filter structure of nephrin molecules). Recent discoveries of mutations in the range of genes encoding proteins involved in the structure or function of the glomerular filtration barrier have provided new insights into mechanisms of glomerular diseases. In this review, we summarize recent progress in the elucidation of the genetic basis of some glomerulopathies in humans.  相似文献   

6.
Podocytes form an epithelial layer on the outer aspect of the basement membrane of glomerular capillaries. The interdigitating pattern of podocyte foot processes (PFPs) generates a unique and extremely long cell-cell contact area - the filtration slit. Thus, the interdigitating PFPs are the morphological basis for the high hydraulic conductivity of the glomerular capillaries. Any disturbance in this interdigitating pattern results in a drop of glomerular filtration rate impairing renal function. PFPs are based on the actin cytoskeleton, consisting of a subplasmalemmal network and a central core of filament bundles. Besides giving PFPs their morphology, the actin cytoskeleton anchors cell-cell contact and cell-matrix proteins in podocytes. Several human genetic diseases as well as transgenic mouse models provide evidence for the crucial role of the actin cytoskeleton in podocytes. Varying flow rates of the filtrate, increased glomerular capillary pressure in glomerular hypertension, and varying activation states of contractile proteins in PFPs impose a mechanical load on the actin cytoskeleton, challenging the intricate arrangement of PFPs and podocyte adhesion. Here we review data about the actin cytoskeleton of podocytes and the response of podocytes to mechanical load. From these data possible mechanisms are emerging how the actin cytoskeleton may allow podocytes to adapt to states of increased mechanical load.  相似文献   

7.
Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell-cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell-cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate.  相似文献   

8.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

9.
The endothelial glycocalyx is a gel-like layer which covers the luminal side of blood vessels. The glomerular endothelial cell (GEnC) glycocalyx is composed of proteoglycan core proteins, glycosaminoglycan (GAG) chains, and sialoglycoproteins and has been shown to contribute to the selective sieving action of the glomerular capillary wall. Damage to the systemic endothelial glycocalyx has recently been associated with the onset of albuminuria in diabetics. In this study, we analyze the effects of high glucose on the biochemical structure of the GEnC glycocalyx and quantify functional changes in its protein-restrictive action. We used conditionally immortalized human GEnC. Proteoglycans were analyzed by Western blotting and indirect immunofluorescence. Biosynthesis of GAG was analyzed by radiolabeling and quantified by anion exchange chromatography. FITC-albumin was used to analyze macromolecular passage across GEnC monolayers using an established in vitro model. We observed a marked reduction in the biosynthesis of GAG by the GEnC under high-glucose conditions. Further analysis confirmed specific reduction in heparan sulfate GAG. Expression of proteoglycan core proteins remained unchanged. There was also a significant increase in the passage of albumin across GEnC monolayers under high-glucose conditions without affecting interendothelial junctions. These results reproduce changes in GEnC barrier properties caused by enzymatic removal of heparan sulfate from the GEnC glycocalyx. They provide direct evidence of high glucose-induced alterations in the GEnC glycocalyx and demonstrate changes to its function as a protein-restrictive layer, thus implicating glycocalyx damage in the pathogenesis of proteinuria in diabetes.  相似文献   

10.
The glomerular filtration barrier is composed of glomerular endothelial cells, the glomerulus basement membrane and the podocyte cell layer. The filtration barrier is a target of injury in several systemic and renal diseases, and this often leads to progressive renal disease and kidney failure. Therefore, it is essential to understand the molecular biology of the glomerulus. During the last two decades, a lot of new information about molecular components of the glomerulus filtration barrier has been generated. Many of the key discoveries have been obtained through studies on the genetic background of inherited glomerular diseases. These studies have emphasized the role of podocytes in the filtration barrier function. During the last decade, the use of knockout mouse technology has become more available and given important new insights into the functional significance of glomerular components. Large-scale approaches, such as microarray profiling, have also given data about molecules involved in the biology and pathology of the glomerulus. In the coming decade, the use of global expression profiling platforms, transgenic mouse lines, and other in vivo gene delivery methods will rapidly expand our understanding of biology and pathology of the glomerular filtration barrier, and hopefully expose novel target molecules for therapy in progressive renal diseases.  相似文献   

11.
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.  相似文献   

12.
Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall.  相似文献   

13.
The bicarbonate/chloride exchanger 1 (AE1, Band 3) is abundantly expressed in the red blood cell membrane, where it is involved in gas exchange and functions as a major site of cytoskeletal attachment to the erythrocyte membrane. A truncated kidney isoform (kAE1) is highly expressed in type A intercalated cells of the distal tubules, where it is vital for urinary acidification. Recently, kAE1 has emerged as a novel physiologically significant protein in the kidney glomerulus. This minireview will discuss the known interactions of kAE1 in the podocytes and the possible mechanisms whereby this important multispanning membrane protein may contribute to the function of the glomerular filtration barrier and prevent proteinuria.  相似文献   

14.
15.
Using a novel approach for analysis of TRPC channel activity, we report here that NSAIDs are involved into regulation of TRPC channels in the podocytes of the freshly isolated decapsulated glomeruli. Fluorescence and electron microscopy techniques confirmed the integrity of podocytes in the glomeruli. Western blotting showed that TRPC1, 3 and 6 are highly expressed in the glomeruli. Single-channel patch clamp analysis revealed cation currents with distinct TRPC properties. This is the first report describing single TRPC-like currents in glomerular podocytes. Furthermore, our data provide a novel mechanism of NSAIDs regulation of TRPC channels, which might be implicated in maintaining the glomerular filtration barrier.  相似文献   

16.
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.  相似文献   

17.
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.  相似文献   

18.
The kidney filtration barrier is formed by the combination of endothelial cells, basement membrane and epithelial cells called podocytes. These specialized actin-rich cells form long and dynamic protrusions, the foot processes, which surround glomerular capillaries and are connected by specialized intercellular junctions, the slit diaphragms. Failure to maintain the filtration barrier leads to massive proteinuria and nephrosis. A number of proteins reside in the slit diaphragm, notably the transmembrane proteins Nephrin and Neph1, which are both able to act as tyrosine phosphorylated scaffolds that recruit cytoplasmic effectors to initiate downstream signaling. While association between tyrosine-phosphorylated Neph1 and the SH2/SH3 adaptor Grb2 was shown in vitro to be sufficient to induce actin polymerization, in vivo evidence supporting this finding is still lacking. To test this hypothesis, we generated two independent mouse lines bearing a podocyte-specific constitutive inactivation of the Grb2 locus. Surprisingly, we show that mice lacking Grb2 in podocytes display normal renal ultra-structure and function, thus demonstrating that Grb2 is not required for the establishment of the glomerular filtration barrier in vivo. Moreover, our data indicate that Grb2 is not required to restore podocyte function following kidney injury. Therefore, although in vitro experiments suggested that Grb2 is important for the regulation of actin dynamics, our data clearly shows that its function is not essential in podocytes in vivo, thus suggesting that Grb2 rather plays a secondary role in this process.  相似文献   

19.
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.  相似文献   

20.
The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号