首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiga toxin 2 (Stx2) is a major pathogenic factor in Shiga toxin-producing Escherichia coli (STEC) infections. Some factor that neutralizes Stx2 in vitro had been shown to be specifically present in human serum and we recently identified it as human serum amyloid P component (HuSAP). Here, we report the role of HuSAP in STEC infections. HuSAP could not rescue Stx2-challenged mice from death, and it instead reduced the efficacy of the Stx2-neutralizing humanized monoclonal antibody TMA-15 when a lower dose of TMA-15 was injected to the mice. By contrast, the efficacy of TMA-15 at a higher dose was uninfluenced by the presence of HuSAP. These findings suggest that HuSAP acts as a carrier protein of Stx2 rather than as a Stx2-neutralizing factor in the human circulation and that passive immune therapy with Stx2-neutralizing antibodies such as TMA-15 is useful to prevent severe complications associated with STEC infections even in the presence of HuSAP.  相似文献   

2.
In addition to stimulating IFN-gamma synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1beta and the chemokines IL-8 and macrophage inflammatory protein-1alpha. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1beta converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1beta, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1beta-/- mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-gamma but not IL-1beta in ICE-/- mice is responsible for this resistance. However, IFN-gamma-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-gamma-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-gamma and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-gamma and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-gamma production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.  相似文献   

3.
It has been suggested that some factor present in human plasma binds to Shiga toxin 2 (Stx2) and neutralizes it in vitro (Bitzan, M., Klemt, M., Steffens, R., and Muller-Wiefel, D. E. (1993) Infection 21, 140-145). This factor does not exist in other species (Caprioli, A., Luzzi, I., Seganti, L., Marchetti, M., Karmali, M., Clarke, I., and Boyd, B. (1994) Recent Adv. VTEC Infect. 353-356). Because analysis of this factor is important to understanding the pathology induced by Shiga toxin-producing Escherichia coli, we purified this factor from human plasma and identified it. Purification was carried out by serially subjecting human plasma to Con A-Sepharose, DEAE-Sepharose, hydroxyapatite, and gel-filtration high performance liquid chromatography (HPLC), using Stx2-neutralizing activity as the indicator. The gel-filtration HPLC fraction yielded a single band on SDS-polyacrylamide gel electrophoresis. Twenty N-terminal amino acid residues of this fraction were analyzed and found to correspond perfectly to human serum amyloid P component (HuSAP). Because commercially available HuSAP also showed Stx2 binding and neutralizing activity, we identified this factor as HuSAP.  相似文献   

4.
5.
6.
Cytokines, in particular tumor necrosis factor (TNF), appear to be necessary to develop the pathological process of Shiga toxin-producing Escherichia coli (STEC) infection. In this study we examined the effect of anisodamine, a vasoactive drug, on TNF-alpha production in Shiga toxin type 2 (Stx2)-stimulated human monocytic cells in vitro and in Stx2-injected mice sera in vivo. Human monocytes and THP-1 cells were stimulated by Stx2 (1-100 ng/ml) with or without anisodamine addition (1-400 micrograms/ml). For in vivo evaluations, C57BL/6 mice were given a single intraperitoneal injection of anisodamine (6-50 mg/kg) or saline after intraperitoneal injection of Stx2 (50 ng/kg). The results showed that anisodamine suppressed Stx2-induced TNF-alpha production in a dose- and time-dependent manner. Anisodamine also suppressed Stx2-induced TNF-alpha mRNA expression. Further study showed that endogenous prostaglandin E2 may be involved in this inhibitory effect. In contrast to TNF-alpha mRNA, anisodamine at concentrations as high as 400 micrograms/ml did not decrease Stx2-induced IL-1 beta and IL-8 mRNA levels. In addition, anisodamine (> 50 micrograms/ml) increased Stx2-stimulated THP-1 cell viability. Levels of TNF-alpha in anisodamine-treated mice sera were significantly lower than those in the saline-treated group 1.5 and 24 hr after Stx2 injection. Anisodamine induced a lower percentage of death in Stx2-injected mice. Taken together, our results indicate that anisodamine has an important regulatory effect on Stx2-induced TNF-alpha production in vitro and in vivo. The present study suggested that this drug should be further investigated for its effects on Stx2-mediated diseases in humans.  相似文献   

7.
Tumor necrosis factor (TNF) is an essential mediator in the pathogenesis of Gram-negative septic shock. Injection of TNF into normal mice leads to systemic, lethal inflammation, which is indistinguishable from lipopolysaccharide (LPS)-induced lethal inflammation. alpha(2)-macroglobulin (A2M) is a major positive acute phase protein with broad-spectrum protease-inhibitory activity. Mouse A2M-deficient (MAM-/-) mice were significantly protected against lethal systemic inflammation induced by TNF. The protection is not due to faster clearance of the injected TNF. The induction of tolerance to TNF-induced lethality by repetitive administration of small doses of human TNF for five consecutive days was equally efficient in both mutant mice compared to wild-type mice. In D-(+)-galactosamine (GalN)-sensitized mice, TNF induces lethal inflammatory hepatitis. MAM(-/-) mice are equally sensitive to the lethal combination of TNF/GalN. Furthermore, interleukin-1-induced desensitization to TNF/GalN was not impaired in MAM(-/-) mice. We conclude that MAM plays a mediating role in TNF-induced lethal shock and that MAM deficiency does not reduce changes in efficiency of tolerance and desensitization to TNF and TNF/GalN-induced lethality, respectively.  相似文献   

8.
The AB(5) toxin Shiga toxin 2 (Stx2) has been implicated as a major virulence factor of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains in the progression of intestinal disease to more severe systemic complications. Here, we demonstrate that supernatant from a normal E. coli isolate, FI-29, neutralizes the effect of Stx2, but not the related Stx1, on Vero cells. Biochemical characterization of the neutralizing activity identified the lipopolysaccharide (LPS) of FI-29, a serogroup O107/O117 strain, as the toxin-neutralizing component. LPSs from FI-29 as well as from type strains E. coli O107 and E. coli O117 were able bind Stx2 but not Stx1, indicating that the mechanism of toxin neutralization may involve inhibition of the interaction between Stx2 and the Gb(3) receptor on Vero cells.  相似文献   

9.
Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti-P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.  相似文献   

10.
Shiga toxin-producing Escherichia coli produces watery diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS). In Argentina, HUS is the most common cause of acute renal failure in children. The purpose of the present study was to examine the cytotoxicity of Stx type 2 (Stx2 holotoxin) and its B subunit (Stx2 B subunit) on human renal tubular epithelial cells (HRTEC), in the presence and absence of inflammatory factors. Cell morphology, cell viability, protein synthesis and apoptosis were measured. HRTEC are sensitive to both Stx2 holotoxin and Stx2 B subunit in a dose- and time-dependent manner. IL-1, LPS and butyrate but not TNF, IL-6 and IL-8, increased the Stx mediated cytotoxicity. The effects of Stx2 B subunit appear at doses higher than those used for Stx2 holotoxin. Although the physiological importance of these effects is not clear, it is important to be aware of any potentially toxic activity in the B subunit, given that it has been proposed for use in a vaccine.  相似文献   

11.
Abstract We established a mouse model to differentiate between a lethal and non-lethal presentation of endotoxic shock. The model involved injecting different amounts of Escherichia coli LPS into C3H/HeN mice which had been 'primed' with BCG. We found that the mice receiving non-lethal and lethal doses of LPS could not be differentiated in terms of their physical symptoms for the first 8 h post-injection. Tumour necrosis factor (TNF) was detected at concentrations 2–9-fold greater in mice receiving lethal doses of LPA when compared with non-lethally injected mice. However, given that (i) the successful detection of this differential was dependent on the time of sampling and (ii) that TNF was only detected in the first 3–4 h post LPS challenge, we suggest that TNF may not be very useful as a prognostic marker in endotoxic shock. In contrast, circulating IL-6 appeared to mirror the symptoms of the endotoxic mice. The relative disappearance of IL-6 after 10 h in the non-lethally injected mice corresponded with their symptomatic recovery, while IL-6 continued to circulate up to the time of death in the lethally injected mice. Furthermore, there appeared to be a good correlation between the levels of injected LPS and the levels of IL-6 induced into the circulation. Our results suggest that IL-6, rather than TNF, may serve as a prognostic marker for endotoxic shock.  相似文献   

12.
The Glu-Leu-Arg(+) (ELR(+)) CXC chemokines are potent promoters of angiogenesis and have been demonstrated to induce a significant portion of nonsmall cell lung cancer-derived angiogenic activity and support tumorigenesis. ELR(+) CXC chemokines share a common chemokine receptor, CXCR2. We hypothesized that CXCR2 mediates the proangiogenic effects of ELR(+) CXC chemokines during tumorigenesis. To test this postulate, we used syngeneic murine Lewis lung cancer (LLC; 3LL, H-2(b)) heterotopic and orthotopic tumor model systems in C57BL/6 mice replete (CXCR2(+/+)) and deficient in CXCR2 (CXCR2(-/-)). We first demonstrated a correlation of the expression of endogenous ELR(+) CXC chemokines with tumor growth and metastatic potential of LLC tumors. Next, we found that LLC primary tumors were significantly reduced in growth in CXCR2(-/-) mice. Moreover, we found a marked reduction in the spontaneous metastases of heterotopic tumors to the lungs of CXCR2(-/-) mice. Morphometric analysis of the primary tumors in CXCR2(-/-) mice demonstrated increased necrosis and reduced vascular density. These findings were further confirmed in CXCR2(+/+) mice using specific neutralizing Abs to CXCR2. The results of these studies support the notion that CXCR2 mediates the angiogenic activity of ELR(+) CXC chemokines in a preclinical model of lung cancer.  相似文献   

13.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

14.
The Duffy blood group Ag (dfy) binds selective CXC and CC chemokines at high affinity and is expressed on erythrocytes and endothelial cells. However, it does not transmit a signal via G proteins, as occurs with other seven-transmembrane receptors. We hypothesized that dfy functions as a chemokine reservoir and regulates inflammation by altering soluble chemokine concentrations in the blood and tissue compartments. We determined whether Duffy Ag "loss-of-function" phenotypes (human and murine) are associated with alterations in plasma chemokine concentrations during the innate inflammatory response to LPS. Plasma CXCL8 and CCL2 concentrations from humans homozygous for the GATA-1 box polymorphism, a dfy polymorphism that abrogates erythrocyte chemokine binding, were higher than in heterozygotes following LPS stimulation of their whole blood in vitro. Similarly, dfy(-/-) mice showed higher plasma MIP-2 concentrations than dfy(+/+) mice following LPS stimulation of whole blood in vitro. We then determined the relative contributions of erythrocyte and endothelial Duffy Ag in modifying chemokine concentrations and neutrophil recruitment in the lungs following intratracheal LPS administration in dfy(-/-) and dfy(+/+) mice reconstituted with dfy(-/-) or dfy(+/+) marrow. Mice lacking endothelial dfy expression had higher MIP-2 and keratinocyte chemoattractant concentrations in the airspaces. Mice lacking erythrocyte dfy had higher MIP-2 and keratinocyte chemoattractant concentrations in the lung tissue vascular space, but lower plasma chemokine concentrations associated with attenuated neutrophil recruitment into the airspaces. These data indicate that dfy alters soluble chemokine concentrations in blood and local tissue compartments and enhances systemic bioavailability of chemokines produced during local tissue inflammation.  相似文献   

15.
We investigated the relationship between expression of the O side chain of outer membrane lipopolysaccharide (LPS) and infection by a Shiga toxin 2 (Stx2)-converting phage in normal and benign strains of Escherichia coli. Of 19 wild-type E. coli strains isolated from the feces of healthy subjects, those with low-molecular-weight LPS showed markedly higher susceptibility to lytic and lysogenic infection by Stx2 phages than those with high-molecular-weight LPS. All lysogens produced infectious phage particles and Stx2. The Stx-negative E. coli O157:H7 strain ATCC43888 with an intact O side chain was found to be resistant to lysis by an Stx2 phage and lysogenic infection by a recombinant Stx2 phage, whereas a rfbE mutant deficient in the expression of the O side chain was readily infected by the phage and yielded stable lysogens. The evidence suggests that an O side chain deficiency leads to the creation of new pathotypes of Shiga toxin-producing E. coli (STEC) within the intestinal microflora.  相似文献   

16.
BALB/c mice were sensitized to lethal effects of human rTNF-alpha and of human rIL-1 alpha by simultaneous treatment with sublethal doses of actinomycin D (Act D) or D-galactosamine (GalN). In contrast, treatment with sublethal doses of TNF or IL-1 themselves resulted in desensitization of the mice to the lethal effect of these cytokines: mice injected with TNF or IL-1 in the absence of Act D or GalN responded to a second injection of TNF or IL-1, this time together with Act D or GalN, by a significantly delayed death, or even survived. Desensitization developed rapidly (0.5-1.0 h) and abated 24 to 48 h postinjection. Each of the two cytokines induced hyporesponsiveness to its own lethal effect as well as to that of the other. Injection of TNF or IL-1 at sublethal doses resulted also in hyporesponsiveness to the lethal effect of LPS on mice primed with bacillus Calmette-Guérin, an effect which most likely is mediated by TNF and IL-1 produced in those mice in response to the LPS. TNF and IL-1 in combination had an additive effect both in lethality and in desensitization of the mice. These findings suggest that some of the deleterious effects of TNF and IL-1 are modulated by antagonistic mechanisms; mechanisms which can be suppressed by sensitizing agents, specifically by agents inhibiting the synthesis of RNA or protein; but which, in the absence of such agents, are found to be augmented in response to TNF and IL-1, thus resulting in desensitization.  相似文献   

17.
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.  相似文献   

18.
The Duffy Ag expressed on RBCs, capillaries, and postcapillary venular endothelial cells binds selective CXC and CC chemokines with high affinity. Cells transfected with the Duffy Ag internalize but do not degrade chemokine ligand. It has been proposed that Duffy Ag transports chemokines across the endothelium. We hypothesized that Duffy Ag participates in the movement of chemokines across the endothelium and, by doing so, modifies neutrophil transmigration. We found that the Duffy Ag transfected into human endothelial cells facilitates movement of the radiolabeled CXC chemokine, growth related oncogene-alpha/CXC chemokine ligand 1 (GRO-alpha/CXCL1), across an endothelial monolayer. In addition, neutrophil migration toward GRO-alpha/CXCL1 and IL-8 (IL-8/CXCL8) was enhanced across an endothelial monolayer expressing the Duffy Ag. Furthermore, GRO-alpha/CXCL1 stimulation of endothelial cells expressing the Duffy Ag did not affect gene expression by oligonucleotide microarray analysis. These in vitro observations are supported by the finding that IL-8/CXCL8-driven neutrophil recruitment into the lungs was markedly attenuated in transgenic mice lacking the Duffy Ag. We conclude that Duffy Ag has a role in enhancing leukocyte recruitment to sites of inflammation by facilitating movement of chemokines across the endothelium.  相似文献   

19.
Burdet J  Zotta E  Cella M  Franchi AM  Ibarra C 《PloS one》2010,5(12):e15127
Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved.  相似文献   

20.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号