首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adult male gorilla was donated from private ownership in 1994 to Zoo Atlanta and became part of the American Zoo and Aquarium Association's Gorilla Species Survival Plan. This animal, Ivan, was captured as an infant in Africa in 1964. Ambiguity regarding origin and concomitant sub‐species designation was resolved by analyzing the cytochrome oxidase II mitochondrial gene known to contain eight diagnostic sites for gorilla sub‐species. Ivan has the diagnostic profile that characterizes the western clade Gorilla gorilla gorilla. Zoo Biol 18:429–432, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
3.
驰龙类的精美临河盗龙(Linheraptor exquisitus)于2010年基于一件近完整骨架命名,化石采自内蒙古西部巴彦满达呼大门地点上白垩统乌兰苏海组。然而,最近三项研究认为精美临河盗龙是蒙古乌哈托喀地点上白垩统捷达克赫塔组发现的白魔龙(Tsaagan mangas)的晚出异名。本文依据61个形态学特征区分精美临河盗龙和白魔龙,否认了上述观点。许多特征来自对精美临河盗龙正型标本先前未修理部分,特别是头骨左侧的观察。这些新观察支持和加强了我们先前认为的精美临河盗龙和白魔龙属于两个不同属种的观点。精美临河盗龙具有的一些特征之前被认为是白魔龙或者其他驰龙类的自近裔特征,这表明进步的骨骼特征在驰龙类中的分布异常复杂。认为精美临河盗龙和白魔龙为同物异名的观点实际上忽略了很多微小的形态变异。增加分类取样可以将那些看似显著的鉴定特征转化为更加细微的形态变异,而这些形态变异对于精细的系统发育分析具有潜在的重要意义。在未来的研究中,利用连续数据的严格定量方法,有助于处理类似信息。  相似文献   

4.
5.
Tobamoviruses, mostly isolated from solanaceous plants, may represent ancient virus lineages that have codiverged with their hosts. Recently completed nucleotide sequences of six nonsolanaceous tobamoviruses allowed assessment of the codivergence hypothesis and support a third subgroup within tobamoviruses. The genomic sequences of 12 tobamoviruses and the partial sequences of 11 others have been analyzed. Comparisons of the predicted protein sequences revealed three clusters of tobamoviruses, corresponding to those infecting solanaceous species (subgroup 1), those infecting cucurbits and legumes (subgroup 2), and those infecting crucifers. The orchid-infecting odontoglossum ringspot tobamovirus was associated with subgroup 1 genomes by its coat and movement protein sequences, but with the crucifer-pathogenic tobamoviruses by the remainder of its genome, suggesting that it is the progeny of a recombinant. For four of five genomic regions, subgroup 1 and 3 genomes were equidistant from a subgroup 2 genome chosen for comparison, suggesting uniform rates of evolution. A phylogenetic tree of plant families based on the tobamoviruses they harbor was congruent with that based on rubisco sequences but had a different root, suggesting that codivergence was tempered by rare events of viruses of one family colonizing another family. The proposed subgroup 3 viruses probably have an origin of virion assembly in the movement protein gene, a large (25-codon) overlap of movement and coat protein open reading frames, and a comparably shorter genome. Codon-position- dependent base compositions and codon prevalences suggested that the coat protein frame of the overlap region was ancestral. Bootstrapped parsimony analysis of the nucleotides in the overlap region and of the sequences translated from the -1 frame (the subgroup 3 movement protein frame) of this region produced trees inconsistent with those deduced from other regions. The results are consistent with a model in which a no or short overlap organization was ancestral. Despite encoding of subgroup 2 and 3 movement protein C-termini by nonhomologous nucleotides, weak similarities between their amino acid sequences suggested convergent sequence evolution.   相似文献   

6.
Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modern developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systematics is explored in this paper and we suggest two important applications of the approach to insect systematics--character dissection and morphological landmarking. Existing morphological characters can be dissected into their genetic and molecular components in some cases and this will lead to more and richer character information in systematic studies. Character landmarking will he essential to systematic studies for clarifying structures such as shapes or convergences, which are previously hard to analyze anatomical regions. Both approaches will aid greatly in expanding our understanding of homology in particular, and insect development in general.  相似文献   

7.
Haploid chromosome numbers (n) of parasitic Hymenoptera (= traditional Parasitica + Chrysidoidea) vary from 2 to 23. However, this range can be subdivided into three intervals with n= 14–23 (less derived parasitic wasps, e.g., some Ichneumonidae and Braconidae as well as Gasteruptiidae), 8–13 (many other parasitic Hymenoptera) and 2–7 (Dryinidae, the majority of Chalcidoidea and some advanced Braconidae, e.g. Aphidiinae). The symmetric karyotype with a relatively high chromosome number (n= 14–17) and the prevalence of biarmed chromosomes must be considered as a groundplan feature of parasitic Hymenoptera. Independent reductions of chromosome numbers (n≤ 10–11) occurred in some groups of the superfamily Ichneumonoidea as well as in the common ancestor of the Proctotrupoidea sensu lato, Ceraphronoidea, Cynipoidea and Chalcidoidea. Further multiple decreases in chromosome numbers (n≤ 4–6) took place in some Braconidae, various lineages of the superfamily Chalcidoidea as well as in the family Dryinidae. Two main trends prevailed in the karyotype evolution of parasitic wasps: the reduction of chromosome numbers (mainly due to tandem fusions and less frequently due to centric ones) and karyotypic dissymmetrization (through an increase in size differentiation of chromosomes and/or in the share of acrocentrics in a chromosome set). Although karyotypic features of parasitic Hymenoptera can be used for solving taxonomic problems at various levels, this method is the most effective at the species level.  相似文献   

8.
Ernst Mayr's scientific career continues strongly 70 years after he published his first scientific paper in 1923. He is primarily a naturalist and ornithologist which has influenced his basic approach in science and later in philosophy and history of science. Mayr studied at the Natural History Museum in Berlin with Professor E. Stresemann, a leader in the most progressive school of avian systematics of the time. The contracts gained through Stresemann were central to Mayr's participation in a three year expedition to New Guinea and The Solomons, and the offer of a position in the Department of Ornithology, American Museum of Natural History, beginning in 1931. At the AMNH, Mayr was able to blend the best of the academic traditions of Europe with those of North America in developing a unified research program in biodiversity embracing systematics, biogeography and nomenclature. His tasks at the AMNH were to curate and study the huge collections amassed by the Whitney South Sea Expedition plus the just purchased Rothschild collection of birds. These studies provided Mayr with the empirical foundation essential for his 1942Systematics and the Origin of Species and his subsequent theoretical work in evolutionary biology as well as all his later work in the philosophy and history of science. Without a detailed understanding of Mayr's empirical systematic and biogeographic work, one cannot possibly comprehend fully his immense contributions to evolutionary biology and his later analyses in the philosophy and history of science.  相似文献   

9.
To completely understand the ecology of a bacterial community, we need to identify its ecologically distinct populations (ecotypes). The greatest promise for enumerating a community's constituent ecotypes is held by molecular approaches that identify bacterial ecotypes as DNA sequence clusters. These approaches succeed when ecotypes correspond with sequence clusters, but some models of bacterial speciation predict a one-to-many and others a many-to-one relationship between ecotypes and sequence clusters. A further challenge is that sequence-based phylogenies often contain a hierarchy of clusters and subclusters within clusters, and there is no widely accepted theory to guide systematists and ecologists to the size of cluster most likely to correspond to ecotypes. While present systematics attempts to use universal thresholds of sequence divergence to help demarcate species, the recently developed 'community phylogeny' approach assumes no universal thresholds, but demarcates ecotypes based on the analysis of a lineage's evolutionary dynamics. Theory-based approaches like this one can give a conceptual framework as well as operational criteria for hypothesizing the identity and membership of ecotypes from sequence data; ecology-based approaches can then confirm that the putative ecotypes are actually ecologically distinct. Bacterial ecotypes that are demonstrated to have a history of coexistence as ecologically distinct lineages (based on sequence analysis) and as a prognosis of future coexistence (based on ecological differences), are the fundamental units of bacterial ecology and evolution, and should be recognized by bacterial systematics.  相似文献   

10.
The ciliate genus Chlamydodon is characterized by a unique cross-striated band (CSB) along the cell perimeter. To date, more than 15 nominal species have been assigned to this genus, all of which are exclusively from marine or brackish water. In the present work, we have revised the genus according to the available data and suggest an illustrated key to aid species diagnosis. In addition, the systematic relationships of chlamydodontid congeners were analysed based on SSU rRNA gene sequences, indicating that all congeners belong to a well-defined clade. Furthermore, we investigated three species from coastal areas of China, including two new species, Chlamydodon wilberti sp. nov. and C. bourlandi sp. nov., using morphological and phylogenetic criteria. Chlamydodon wilberti sp. nov. is characterized by a cell size of 65–105 × 35–60 µm, a complete CSB, and 38–49 somatic kineties. Chlamydodon bourlandi sp. nov. has a cell size of 150–250 × 65–150 µm, a complete CSB, a reddish to violet cell colour, 83–97 somatic kineties, and 40–68 contractile vacuoles. As a further contribution, a well-studied species, C. triquetrus (Müller, 1786) Kahl, 1931, is also re-described.

www.zoobank.org/urn:lsid:zoobank.org:pub:B83A5466-9D2B-4502-9A23-F16A61D48172.  相似文献   


11.
The microarray approach has been proposed for high throughput analysis of the microbial community by providing snapshots of the microbial diversity under different environmental conditions. For this purpose, a prototype of a 16S rRNA-based taxonomic microarray was developed and evaluated for assessing bacterial community diversity. The prototype microarray is composed of 122 probes that target bacteria at various taxonomic levels from phyla to species (mostly Alphaproteobacteria). The prototype microarray was first validated using bacteria in pure culture. Differences in the sequences of probes and potential target DNAs were quantified as weighted mismatches (WMM) in order to evaluate hybridization reliability. As a general feature, probes having a WMM > 2 with target DNA displayed only 2.8% false positives. The prototype microarray was subsequently tested with an environmental sample, which consisted of an Agrobacterium-related polymerase chain reaction amplicon from a maize rhizosphere bacterial community. Microarray results were compared to results obtained by cloning-sequencing with the same DNA. Microarray analysis enabled the detection of all 16S rRNA gene sequences found by cloning-sequencing. Sequences representing only 1.7% of the clone library were detected. In conclusion, this prototype 16S rRNA-based taxonomic microarray appears to be a promising tool for the analysis of Alphaproteobacteria in complex ecosystems.  相似文献   

12.
13.
In recent years we have investigated the evolution of the Holarctic leaf-beetle genus Timarcha using molecular approaches, but to date several important questions remained unanswered, including its systematic arrangement in a temporal context, or the phylogenetic placement of the Nearctic taxa. Here I present a reanalysis of available genetic data together with newly generated data for key taxa (markers 16S rDNA, CO2, ITS-2, and 18S rDNA), including the Nearctic species (subgenus Americanotimarcha), using direct optimization-based phylogenetic reconstructions. Lineage ages are estimated using maximum likelihood branch-length estimates and the molecular clock calibration derived from several presumed vicariance events in the Mediterranean. Phylogenetic analyses and 18S rDNA divergences suggest the ancient divergence of the Nearctic and Palaearctic lineages, related to the North Atlantic opening in the middle Eocene. The diversification of the Palaearctic Timarcha seems closely related to the geological evolution of the Mediterranean area during the Tertiary, with Pleistocenic climate changes affecting species ranges and lineage extinction, but not resulting in extensive speciation.  相似文献   

14.
Ontogeny is considered as a process that allows linking two key components of biological systematics in an objective way: historically independent character attribution and phylogeny. It is proposed to designate the general theory that unifies the ??static?? traditional taxonomy and the dynamic evolutionary process on the basis of ontogenetic transformation of shapes of organisms as the ontogenetic systematics. One of the important practical applications is a new model of the evolution of bilaterian animals, which supposes an ancestral status of clonal asexual reproduction and its multiple reduction in different lines of Bilatera.  相似文献   

15.
We investigated the genetic diversity and phylogenetic placement of the butterflies in the genus Colotis and eight related pierid genera using sequence information from two mitochondrial and two nuclear genes. To establish the status of species, we initially barcoded 632 specimens representative of all genera and most species and subspecies in those genera. A subset was then selected for phylogenetic analysis where additional gene regions were sequenced: 16S rRNA (523 bp), EF‐1α (1126 bp) and wg (404 bp). DNA barcode results were largely congruent with the traditional classification of species in the Colotis group, but deep splits or lack of genetic divergence in some cases supported either species‐level differentiation or synonymy. Despite using information from four genes, the deeper nodes in our phylogeny were not strongly supported, and monophyly of the ‘Colotis group’ and the genera Colotis and Eronia could not be established. To preserve the monophyly of Colotis, we revive the genus Teracolus for three outlying species previously in Colotis (i.e. Colotis eris, Colotis subfasciatus and Colotis agoye), as well as the genus Afrodryas for Eronia leda. The position of Calopieris is unresolved although it appears to be well outside the molecular variation in Colotis (s.l.). A dispersal/vicariance analysis suggested that major diversification in Colotis (s.str.) occurred in Africa with subsequent dispersal to India and Madagascar.  相似文献   

16.
17.
Huynen MA  Gabaldón T  Snel B 《FEBS letters》2005,579(8):1839-1845
The availability of genome sequences and functional genomics data from multiple species enables us to compare the composition of biomolecular systems like biochemical pathways and protein complexes between species. Here, we review small- and large-scale, "genomics-based" approaches to biomolecular systems variation. In general, caution is required when comparing the results of bioinformatics analyses of genomes or of functional genomics data between species. Limitations to the sensitivity of sequence analysis tools and the noisy nature of genomics data tend to lead to systematic overestimates of the amount of variation. Nevertheless, the results from detailed manual analyses, and of large-scale analyses that filter out systematic biases, point to a large amount of variation in the composition of biomolecular systems. Such observations challenge our understanding of the function of the systems and their individual components and can potentially facilitate the identification and functional characterization of sub-systems within a system. Mapping the inter-species variation of complex biomolecular systems on a phylogenetic species tree allows one to reconstruct their evolution.  相似文献   

18.
The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a "complete" community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.  相似文献   

19.
20.

Background  

The hippolytid genus Lysmata is characterized by simultaneous hermaphroditism, a very rare sexual system among Decapoda. Specialized cleaning behavior is reported in a few pair-living species; these life history traits vary within the genus. Unfortunately, the systematics of Lysmata and the Hippolytidae itself are in contention, making it difficult to examine these taxa for trends in life history traits. A phylogeny of Lysmata and related taxa is needed, to clarify their evolutionary relationships and the origin of their unique sexual pattern. In this study, we present a molecular phylogenetic analysis among species of Lysmata, related genera, and several putative hippolytids. The analysis is based upon DNA sequences of two genes, 16S mtDNA and nuclear 28S rRNA. Phylogenetic trees were estimated using Bayesian Inference, Maximum Likelihood, and Maximum Parsimony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号