首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Tyrosine hydroxylase and Parkinson's disease   总被引:7,自引:0,他引:7  
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation ofl-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditaryl-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment withl-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated thatl-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   

2.
3.
The concept that activation of cellular pathways of programmed cell death (PCD) may lead to the death of neurons has been an important hypothesis for adult neurodegenerative diseases. For Parkinson's disease (PD), up until now, the evidence for this hypothesis has largely been of two types: clear evidence of a role for PCD in neurotoxin models of the disease, and somewhat controversial evidence from human postmortem studies. With the rapid pace of discoveries in recent years of the genetic basis of PD, a new form of evidence has emerged. The prevailing concept of the role for PCD in PD has been that its mediators are 'downstream' effectors of more proximate and specific causes related to genetic or environmental factors. However, recent studies of three genes which cause autosomal recessive forms of parkinsonism, parkin, PTEN-induced kinase, and DJ-1, suggest that they may have more intimate relationships with the mediators of PCD and that loss-of-function mutations may result in an increased propensity for neurons to die. Intriguingly, independent studies of the function of these genes have suggested that they may share roles in regulating survival signaling pathways, such as those mediated by the survival signaling kinase Akt. Further elucidation of these relationships will have implications for the pathogenesis and neuroprotective treatment of PD.  相似文献   

4.
The Parkinson disease (PD) is the second most common progressive neurodegenerative disorder that arises due to degeneration of dopaminergic neurons. The causes of this disease are still unknown, but a number of genes involved in pathogenesis of familial and sporadic forms of PD has been identified. According to recent data of genome wide association studies (GWAS), single nucleotide polymorphisms (SNPs) in these genes (including MAPT locus) may play an important role in the development of PD. Therefore, we analyzed distribution of genotype frequencies of SNP rs415430 in the WNT3 gene in the Russian patients with sporadic PD and in the Russian population controls (OR = 0.84, Confidence Interval (95% CI) 0.58-1.23, p = 0.39). It was concluded that SNP rs415430 in the WNT3 gene was not associated with the risk of development of PD.  相似文献   

5.
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.  相似文献   

6.
Environmental exposure, genetic modification, and aging are considered risky for Parkinson's disease (PD). How these risk factors cooperate to induce progressive neurodegeneration in PD remains largely unknown. Paraquat is an herbicide commonly used for weed and grass control. Exposure to paraquat is associated with the increased incidence of PD. In contrast to familial PD, most sporadic PD cases do not have genetic mutation, but may suffer from partial dysfunction of neuron-protective genes as aging. Using conditional transgenic RNAi, we showed that temporal silencing of PINK1 expression in adult mice increased striatal dopamine, the phenotype that could not be induced by constitutive gene silencing. Moreover, early exposure to paraquat sensitized dopaminergic neurons to subsequent silencing of PINK1 gene expression, leading to a significant loss of dopaminergic neurons. Our findings suggest a novel pathogenesis of PD: exposure to environmental toxicants early in the life reduces the threshold of developing PD and partial dysfunction of neuron-protective genes later in the life initiates a process of progressive neurodegeneration to cross the reduced threshold of disease onset.  相似文献   

7.
Su Y  Duan CL  Zhao CL  Zhao HY  Xu QY  Yang H 《生理学报》2003,55(5):583-588
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。  相似文献   

8.
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.  相似文献   

9.
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively; these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless, the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.  相似文献   

10.
11.
MOTIVATION: Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS: We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimer's disease. AVAILABILITY: The code in this paper is available upon request.  相似文献   

12.
Understanding the molecular causes of Parkinson's disease   总被引:8,自引:0,他引:8  
Parkinson's disease (PD) is a neurodegenerative disease that is both common and incurable. The majority of cases are sporadic and of unknown origin but several genes have been identified that, when mutated, give rise to rare, familial forms of the disease. The principal genes that have been shown to cause PD are alpha-synuclein (SNCA), parkin, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1) and DJ-1. Here, we discuss what has been learnt from the study of these genes and what has been elucidated of the molecular pathways that lead to cell degeneration. Of importance is what these molecular events and pathways tell scientists of the common sporadic form of PD. Although complete knowledge of these genes' functions remains elusive, recent work implicates abnormal protein accumulation, protein phosphorylation, mitochondrial dysfunction and oxidative stress as common pathways to PD pathogenesis.  相似文献   

13.
Liu D  Jin L  Wang H  Zhao H  Zhao C  Duan C  Lu L  Wu B  Yu S  Chan P  Li Y  Yang H 《Neurochemical research》2008,33(7):1401-1409
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease (PD). Previous studies have shown that alpha-synuclein is involved in the regulation of dopamine (DA) metabolism, possibly by down-regulating the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in DA biosynthesis. In this study, we constructed alpha-synuclein stably silenced MN9D/alpha-SYN(-) cells by vector mediated RNA interference and examined its effects on DA metabolism. We found that there were no significant differences in TH protein and mRNA levels between MN9D, MN9D/alpha-SYN(-) and MN9D/CON cells, suggesting that silencing alpha-synuclein expression does not affect TH gene expression. However, significant increases in phosphorylated TH, cytosolic 3, 4-dihydroxyphenylalanine (L-DOPA) and DA levels were observed in MN9D/alpha-SYN(-) cells. Our data show that TH activity and DA biosynthesis were enhanced by down-regulation of alpha-synuclein, suggesting that alpha-synuclein may act as a negative regulator of cytosolic DA. With respect to PD pathology, a loss of functional alpha-synuclein may result in increased DA levels in neurons that may lead to cell injury or even death.  相似文献   

14.
15.
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.  相似文献   

16.
Neuronal degeneration is a common mechanism of many neurological diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), and Multiple Sclerosis (MS). While AD and PD are classical neurodegenerative diseases, the primary pathology in MS is driven by autoimmune inflammation, attacking oligodendrocytes and thereby inducing neurodegeneration. In AD and PD, immune cells are also considered to play an important role in the disease progression. While the role of local central nervous system (CNS) innate immune cells is well described, a potential influence of adaptive immune cells in PD and AD is not yet fully understood.Here, we aim to summarize findings concerning adaptive immune cells in PD pathogenesis and compare them to AD and MS. In the first part, we focus on disease-specific alterations of lymphocytes in the circulating blood. Subsequently, we describe what is known about CNS-infiltrated lymphocytes and mechanisms of their infiltration. Finally, we summarize published data and try to understand the mechanisms of how lymphocytes contribute to neurodegeneration in PD, AD, and MS.Lymphocytes are critically involved in the pathogenesis of MS, and clarifying the role of lymphocytes in PD and AD pathogenesis might lead to an identification of a common signature of lymphocytes in neurodegeneration and thus pave the road towards novel treatment options.  相似文献   

17.
Monitoring and predicting evolutionary changes underlying current environmental modifications are complex challenges. Recent approaches to achieve these objectives include assessing the genetic variation and effects of candidate genes on traits indicating adaptive potential. In birds, for example, short tandem repeat polymorphism at four candidate genes (CLOCK, NPAS2, ADCYAP1, and CREB1) has been linked to variation in phenological traits such as laying date and timing of migration. However, our understanding of their importance as evolutionary predictors is still limited, mainly because the extent of genotype–environment interactions (GxE) related to these genes has yet to be assessed. Here, we studied a population of Tree swallow (Tachycineta bicolor) over 4 years in southern Québec (Canada) to assess the relationships between those four candidate genes and two phenological traits related to reproduction (laying date and incubation duration) and also determine the importance of GxE in this system. Our results showed that NPAS2 female genotypes were nonrandomly distributed across the study system and formed a longitudinal cline with longer genotypes located to the east. We observed relationships between length polymorphism at all candidate genes and laying date and/or incubation duration, and most of these relationships were affected by environmental variables (breeding density, latitude, or temperature). In particular, the positive relationships detected between laying date and both CLOCK and NPAS2 female genotypes were variable depending on breeding density. Our results suggest that all four candidate genes potentially affect timing of breeding in birds and that GxE are more prevalent and important than previously reported in this context.  相似文献   

18.
Parkinson's disease (PD) is a common, progressive, incurable disabling condition. The cause is unknown but over the past few years tremendous progress in our understanding of the genetic bases of this condition has been made. To date, this has almost exclusively come from the study of relatively rare Mendelian forms of the disease and there are no currently, widely accepted common variants known to increase susceptibility.The role that the "Mendelian" genes play in common sporadic forms of PD is unknown. Moreover, most studies in PD can really be described as candidate polymorphism studies rather than true and complete assessments of the genes themselves. We provide a model of how one might tackle some of these issues using Parkinson's disease as an illustration. One of the emerging hypotheses of gene environment interaction in Parkinson's disease is based on drug metabolizing (or xenobiotic) enzymes and their interaction with putative environmental toxins. This motivated us to describe a tagging approach for an extensive but not exhaustive list of 55 drug metabolizing enzyme genes. We use these data to illustrate the power, and some of the limitations of a haplotype tagging approach. We show that haplotype tagging is extremely efficient and works well with only a modest increase in effort through different populations. The tagging approach works much less well if the minor allele frequency is below 5%. However, it will now be possible using these tags to evaluate these genes comprehensively in PD and other neurodegenerative conditions.  相似文献   

19.
Although Parkinson’s disease (PD) was first described almost 200 years ago, it remains an incurable disease with a cause that is not fully understood. Nowadays it is known that disturbances in the structure of pathological proteins in PD can be caused by more than environmental and genetic factors. Despite numerous debates and controversies in the literature about the role of mutations in the SNCA and PRKN genes in the pathogenesis of PD, it is evident that these genes play a key role in maintaining dopamine (DA) neuronal homeostasis and that the dysfunction of this homeostasis is relevant to both familial (FPD) and sporadic (SPD) PD with different onset. In recent years, the importance of alphasynuclein (ASN) in the process of neurodegeneration and neuroprotective function of the Parkin is becoming better understood. Moreover, there have been an increasing number of recent reports indicating the importance of the interaction between these proteins and their encoding genes. Among others interactions, it is suggested that even heterozygous substitution in the PRKN gene in the presence of the variants +2/+2 or +2/+3 of NACP-Rep1 in the SNCA promoter, may increase the risk of PD manifestation, which is probably due to ineffective elimination of over-expressed ASN by the mutated Parkin protein. Finally, it seems that genetic testing may be an important part of diagnostics in patients with PD and may improve the prognostic process in the course of PD. However, only full knowledge of the mechanism of the interaction between the genes associated with the pathogenesis of PD is likely to help explain the currently unknown pathways of selective damage to dopaminergic neurons in the course of PD.  相似文献   

20.
Aberrant concentrations of cardiac extracellular matrix (ECM) fibrillar collagen cross-linking have been proposed to be an underlying cause of cardiac diastolic dysfunction however the role of the adaptive immune system in this process has yet to be investigated. Fibrillar collagen cross-linking is a product of the enzymatic activities of lysyl oxidase (LOX and LOXL-3) released by the cardiac fibroblast and possibly cardiac myocytes. Our hypothesis is that stimulation of the TH1 lymphocytes activates lysyl oxidase mediated ECM cross-linking and thereby alters left ventricular function. Three-month old C57BL/J female mice were treated with selective TH1 lymphocyte inducers — T-cell receptor Vβ peptides (TCR). After 6 weeks, candidate gene expression, tissue enzymatic activity, ECM composition, and left ventricular mechanics were quantified. Lymphocyte gene expression and cytokine assay revealed TH1 immune polarization with TCR administration which was associated with a 2.6-fold and 3.1-fold increase of LOX and LOXL3 gene expression, respectively, and a 55% increase in cardiac LOX enzymatic activity. The ECM cross-linked fibrillar collagen increased by 95% when compared with the control. Concurrently, there was a 33% increased ventricular stiffness, decreased cardiac output, and normal ejection fraction. These data implicate the TH1 lymphocyte in the pathogenesis of diastolic dysfunction which has potential clinical application in the pathogenesis of diastolic heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号