首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Willett CS 《Genetica》2011,139(5):575-588
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.  相似文献   

2.
3.
The genetic basis of post-zygotic reproductive isolation is beginning to be untangled in closely related species, but less is known about the genetics of reproductive isolation between divergent populations. Here, two genes encoding malic enzyme (ME) are isolated from the copepod Tigriopus californicus and their influence upon lowered viability in F(2) hybrids of genetically divergent populations is determined. Each ME gene has diverged extensively between T. californicus populations and one gene shows evidence for a recent selective sweep. Segregation patterns of genotypes for both ME genes in adult F(2) hybrids reveal dramatic departures from Mendelian inheritance, deviations that are not seen in F(2) nauplii implying that selection is acting during development based upon the genotype at these ME genes. These results imply that selection against deleterious gene combinations and not aberrant segregation (i.e. meiotic drive) is likely to lead to dramatic departures from Mendelian inheritance observed in these crosses.  相似文献   

4.
Felsenstein distinguished two ways by which selection can directly strengthen isolation. First, a modifier that strengthens prezygotic isolation can be favored everywhere. This fits with the traditional view of reinforcement as an adaptation to reduce deleterious hybridization by strengthening assortative mating. Second, selection can favor association between different incompatibilities, despite recombination. We generalize this "two allele" model to follow associations among any number of incompatibilities, which may include both assortment and hybrid inviability. Our key argument is that this process, of coupling between incompatibilities, may be quite different from the usual view of reinforcement: strong isolation can evolve through the coupling of any kind of incompatibility, whether prezygotic or postzygotic. Single locus incompatibilities become coupled because associations between them increase the variance in compatibility, which in turn increases mean fitness if there is positive epistasis. Multiple incompatibilities, each maintained by epistasis, can become coupled in the same way. In contrast, a single-locus incompatibility can become coupled with loci that reduce the viability of haploid hybrids because this reduces harmful recombination. We obtain simple approximations for the limits of tight linkage, and strong assortment, and show how assortment alleles can invade through associations with other components of reproductive isolation.  相似文献   

5.
Identification of the genes that underlie reproductive isolation provides important insights into the process of speciation. According to the Dobzhansky-Muller model, these genes suffer disrupted interactions in hybrids due to independent divergence in separate populations. In hybrid populations, natural selection acts to remove the deleterious heterospecific combinations that cause these functional disruptions. When selection is strong, this process can maintain multilocus associations, primarily between conspecific alleles, providing a signature that can be used to locate incompatibilities. We applied this logic to populations of house mice that were formed by hybridization involving two species that show partial reproductive isolation, Mus domesticus and Mus musculus. Using molecular markers likely to be informative about species ancestry, we scanned the genomes of 1) classical inbred strains and 2) recombinant inbred lines for pairs of loci that showed extreme linkage disequilibria. By using the same set of markers, we identified a list of locus pairs that displayed similar patterns in both scans. These genomic regions may contain genes that contribute to reproductive isolation between M. domesticus and M. musculus. This hypothesis can now be tested using laboratory crosses and surveys of introgression in the wild.  相似文献   

6.
The heterogametic sex tends to be rare, absent, sterile, or deformed in F1 hybrid crosses between species, a pattern called Haldane's rule (HR). The introgression of single genes or chromosomal regions from one drosophilid species into the genetic background of another have shown that HR is most often associated with fixed genetic differences in inter-specific crosses. However, because such introgression studies have involved species diverged several hundred thousand generations from a common ancestor, it is not clear whether HR attends the speciation process or results from the accumulation of epistatically acting genes postspeciation. We report the first evidence for HR prior to speciation in crosses between two populations of the red flour beetle, Tribolium castaneum, collected 931 km apart in Colombia and Ecuador. In this cross, HR is manifested as an increase in the proportion of deformed males compared to females and the expression of HR is temperature dependent. Neither population, when crossed to a geographically distant population from Japan, exhibits HR at any rearing temperature. Using joint-scaling analysis and additional data from backcrosses and F2's, we find that the hybrid incompatibilities and the emergence of HR are concurrent processes involving interactions between X-linked and autosomal genes. However, we also find many examples of incompatibilities manifest by F2 and backcross hybrids but not by F1 hybrids and most incompatibilities are not sex different in their effects, even when they involve both X-autosomal interactions and genotype-by-environment interactions. We infer that incipient speciation in flour beetles can occur with or without HR and that significant hybrid incompatibilities result from the accumulation of epistatically acting gene differences between populations without differentially affecting the heterogametic sex in F1 hybrids. The temperature dependence of the incompatibilities supports the inference that genotype-by-environment interactions and adaptation to different environments contribute to the genetic divergence important to postzygotic reproductive isolation.  相似文献   

7.
White MA  Steffy B  Wiltshire T  Payseur BA 《Genetics》2011,189(1):289-304
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.  相似文献   

8.
Long-term geographic isolation can result in reproductive incompatibilities due to forces such as mutation, genetic drift, and differential selection. In the Sonoran topminnow, molecular genetic studies of mtDNA, microsatellites, and MHC genes have shown that the endangered Gila and Yaqui topminnows are substantially different, suggesting that divergence took place approximately two million years ago. Here we examined hybrid crosses and backcrosses between these two allopatric taxa to evaluate the accumulation of postmating barriers to reproduction. These results are then compared with results from a previous study where male topminnows were shown to mate assortatively with conspecific females. Despite their preference for conspecific mates, both types of interspecific crosses successfully produced offspring. There was evidence of reduced hybrid fitness, including smaller mean brood size and male-biased sex ratio, for some classes of backcrosses. Brood sizes and interbrood intervals varied significantly when hybrids were subdivided into different cross categories. Our results illustrate the importance of distinctly defining hybrid classes in studies of reproductive isolation. To our knowledge, this is the first such detailed evolutionary analysis in endangered fish taxa.  相似文献   

9.
Willett CS 《Genetics》2006,173(3):1465-1477
The nature of epistatic interactions between genes encoding interacting proteins in hybrid organisms can have important implications for the evolution of postzygotic reproductive isolation and speciation. At this point very little is known about the fitness differences caused by specific closely interacting but evolutionarily divergent proteins in hybrids between populations or species. The intertidal copepod Tigriopus californicus provides an excellent model in which to study such interactions because the species range includes numerous genetically divergent populations that are still capable of being crossed in the laboratory. Here, the effect on fitness due to the interactions of three complex III proteins of the electron transport system in F2 hybrid copepods resulting from crosses of a pair of divergent populations is examined. Significant deviations from Mendelian inheritance are observed for each of the three genes in F2 hybrid adults but not in nauplii (larvae). The two-way interactions between these genes also have a significant impact upon the viability of these hybrid copepods. Dominance appears to play an important role in mediating the interactions between these loci as deviations are caused by heterozygote/homozygote deleterious interactions. These results suggest that the fitness consequences of the interactions of these three complex III-associated genes could influence reproductive isolation in this system.  相似文献   

10.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

11.
Payseur BA  Hoekstra HE 《Genetics》2005,171(4):1905-1916
Reproductive isolation is often caused by the disruption of genic interactions that evolve in geographically separate populations. Identifying the genomic regions and genes involved in these interactions, known as "Dobzhansky-Muller incompatibilities," can be challenging but is facilitated by the wealth of genetic markers now available in model systems. In recent years, the complete genome sequence and thousands of single nucleotide polymorphisms (SNPs) from laboratory mice, which are largely genetic hybrids between Mus musculus and M. domesticus, have become available. Here, we use these resources to locate genomic regions that may underlie reproductive isolation between these two species. Using genotypes from 332 SNPs that differ between wild-derived strains of M. musculus and M. domesticus, we identified several physically unlinked SNP pairs that show exceptional gametic disequilibrium across the lab strains. Conspecific alleles were associated in a disproportionate number of these cases, consistent with the action of natural selection against hybrid gene combinations. As predicted by the Dobzhansky-Muller model, this bias was differentially attributable to locus pairs for which one hybrid genotype was missing. We assembled a list of potential Dobzhansky-Muller incompatibilities from locus pairs that showed extreme associations (only three gametic types) among conspecific alleles. Two SNPs in this list map near known hybrid sterility loci on chromosome 17 and the X chromosome, allowing us to nominate partners for disrupted interactions involving these genomic regions for the first time. Together, these results indicate that patterns produced by speciation between M. musculus and M. domesticus are visible in the genomes of lab strains of mice, underscoring the potential of these genetic model organisms for addressing general questions in evolutionary biology.  相似文献   

12.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

13.
Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin''s original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.  相似文献   

14.
Understanding the processes underlying speciation has long been a challenge to evolutionary biologists. This spurs from difficulties teasing apart the various mechanisms that contribute to the evolution of barriers to reproduction. The study by Rafati et al. ( 2018 ) in this issue of Molecular Ecology combines spatially explicit whole‐genome resequencing with evaluation of differential gene expression across individuals with mixed ancestry to associate the genomic architecture of reproductive barriers with expression of reproductive incompatibilities. In a natural hybrid zone between rabbit subspecies, Oryctolagus cuniculus cuniculus and O. c. algirus (Figure  1 ), Rafati et al. ( 2018 ) use landscape‐level patterns of allele frequency variation to identify potential candidate regions of the genome associated with reproductive isolation. These candidate regions are used to test predictions associated with the genomic architecture of reproductive barriers, including the role of structural rearrangements, enrichment of functional categories associated with incompatibilities, and the contribution of protein‐coding versus regulatory changes. A lack of structural rearrangements and limited protein‐coding changes in candidate regions point towards the importance of regulatory variation as major contributors to genetic incompatibilities, while functional enrichments indicate overrepresentation of genes associated with male infertility. To quantify phenotypic expression of proposed incompatibilities, the authors assess gene expression of experimental crosses. Extensive misregulation of gene expression within the testes of backcross hybrids relative to F1 and parental individuals provides an important link between genotype and phenotype, validating hypotheses developed from assessment of genomic architectures. Together, this work shows how pairing natural hybrid zones with experimental crosses can be used to link observations in nature to mechanistic underpinnings that may be tested experimentally.  相似文献   

15.
Chromosomal rearrangements can promote reproductive isolation by reducing recombination along a large section of the genome. We model the effects of the genetic barrier to gene flow caused by a chromosomal rearrangement on the rate of accumulation of postzygotic isolation genes in parapatry. We find that, if reproductive isolation is produced by the accumulation in parapatry of sets of alleles compatible within but incompatible across species, chromosomal rearrangements are far more likely to favor it than classical genetic barriers without chromosomal changes. New evidence of the role of chromosomal rearrangements in parapatric speciation suggests that postzygotic isolation is often due to the accumulation of such incompatibilities. The model makes testable qualitative predictions about the genetic signature of speciation.  相似文献   

16.
Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson–Dobzhansky–Muller (BDM) incompatibilities. We can detect these from marker transmission ratio distortion (TRD) in hybrid progenies of crosses between species or populations, where TRD is expected to result from selection against heterospecific allele combinations in hybrids. TRD may also manifest itself because of intragenomic conflicts or competition between gametes or zygotes. We studied early stage speciation in Arabidopsis lyrata by investigating patterns of TRD across the genome in F2 progenies of three reciprocal crosses between four natural populations. We found that the degree of TRD increases with genetic distance between crossed populations, but also that reciprocal progenies may differ substantially in their degree of TRD. Chromosomes AL6 and especially AL1 appear to be involved in many single- and two-locus distortions, but the location and source of TRD vary between crosses and between reciprocal progenies. We also found that the majority of single- and two-locus TRD appears to have a gametic, as opposed to zygotic, origin. Thus, while theory on BDM incompatibilities is typically illustrated with derived nuclear alleles proving incompatible in hybrid zygotes, our results suggest a prominent role for distortions emerging before zygote formation.  相似文献   

17.
Dominance, epistasis and the genetics of postzygotic isolation   总被引:14,自引:0,他引:14  
Turelli M  Orr HA 《Genetics》2000,154(4):1663-1679
The sterility and inviability of species hybrids can be explained by between-locus "Dobzhansky-Muller" incompatibilities: alleles that are fit on their "normal" genetic backgrounds sometimes lower fitness when brought together in hybrids. We present a model of two-locus incompatibilities that distinguishes among three types of hybrid interactions: those between heterozygous loci (H(0)), those between a heterozygous and a homozygous (or hemizygous) locus (H(1)), and those between homozygous loci (H(2)). We predict the relative fitnesses of hybrid genotypes by calculating the expected numbers of each type of incompatibility. We use this model to study Haldane's rule and the large effect of X chromosomes on postzygotic isolation. We show that the severity of H(0) vs. H(1) incompatibilities is key to understanding Haldane's rule, while the severity of H(1) vs. H(2) incompatibilities must also be considered to explain large X effects. Large X effects are not inevitable in backcross analyses but rather-like Haldane's rule-may often reflect the recessivity of alleles causing postzygotic isolation. We also consider incompatibilities involving the Y (or W) chromosome and maternal effects. Such incompatibilities are common in Drosophila species crosses, and their consequences in male- vs. female-heterogametic taxa may explain the pattern of exceptions to Haldane's rule.  相似文献   

18.
One cause of reproductive isolation is gamete competition, in which conspecific pollen has an advantage over heterospecific pollen in siring seeds, thereby decreasing the formation of F1 hybrids. Analogous pollen interactions between hybrid pollen and conspecific pollen can contribute to post-zygotic isolation. The herbaceous plants Ipomopsis aggregata and I. tenuituba frequently hybridize in nature. Hand-pollination of I. aggregata with pollen from F1 or F2 hybrids produced as many seeds as hand-pollination with conspecific pollen, suggesting equal pollen viability. However, when mixed pollen loads with 50% conspecific pollen and 50% hybrid pollen were applied to I. aggregata stigmas, fewer than half of the seeds had hybrid sires. Such pollen mixtures are frequently received if plants of the two species and F1 and F2 hybrids are intermixed, suggesting that this advantage of conspecific over hybrid pollen reduces backcrossing and contributes to reproductive isolation.  相似文献   

19.
I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.  相似文献   

20.
Systematic characterization of genetic and molecular mechanisms in the formation of hybrid sterility is of fundamental importance in understanding reproductive isolation and speciation. Using ultra‐high‐density genetic maps, 43 single‐locus quantitative trait loci (QTLs) and 223 digenic interactions for embryo‐sac, pollen, and spikelet fertility are depicted from three crosses between representative varieties of japonica and two varietal groups of indica, which provide an extensive archive for investigating the genetic basis of reproductive isolation in rice. Ten newly detected single‐locus QTLs for inter‐ and intra‐subspecific fertility are identified. Three loci for embryo‐sac fertility are detected in both Nip × ZS97 and Nip × MH63 crosses, whereas QTLs for pollen fertility are not in common between the two crosses thus leading to fertility variation. Five loci responsible for fertility and segregation distortion are observed in the ZS97 × MH63 cross. The importance of two‐locus interactions on fertility are quantified in the whole genome, which identify that three types of interaction contribute to fertility reduction in the hybrid. These results construct the genetic architecture with respect to various forms of reproductive barriers in rice, which have significant implications in utilization of inter‐subspecific heterosis along with improvement in the fertility of indica–indica hybrids at single‐ and multi‐locus level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号