首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type miniaturized glucose sensor with good selectivity and stable current response has been developed. The structure consists of a recessed rectangular microfabricated platinum electrode, inner layer of two electropolymerized nonconducting films, and outer bilayer of poly(tetrafluoroethylene) (Teflon) and polyurethane (PU) films. Glucose oxidase (GOx) is entrapped during the electropolymerization of a poly(m-phenylenediamine) (PMPD) film in an acetate buffer (AB) solution, on which a highly interference-resistive PMPD film is deposited in a phosphate buffered saline (PBS) solution. The second PMPD film causes no significant decrease in accessibility of glucose to GOx. The inner layer maintains less than 1% permeability to acetaminophen for 12 days. The fairly adhesive outer layer allows stable current response. Due to high permeability, the information about enzyme activity can be obtained without serious error in spite of outer layer intervening between enzymes and solution. The apparent Michaelis-Menten constant and the maximum steady-state current density were 24 mM and 80 microA cm(-2), respectively.  相似文献   

2.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

3.
In this article, we report on the facile and rapid synthesis of conjugation polymer poly(p-phenylenediamine) nanobelts (PNs) via room temperature chemical oxidation polymerization of p-phenylenediamine monomers by ammonium persulfate in aqueous medium. We further demonstrate the proof-of-concept that PNs can be used as an effective fluorescent sensing platform for nucleic acid detection for the first time. The general concept used in this approach lies in the facts that the adsorption of the fluorescently labeled single-stranded DNA probe by PN leads to substantial fluorescence quenching, followed by specific hybridization with the complementary region of the target DNA sequence. This results in desorption of the hybridized complex from PN surface and subsequent recovery of fluorescence. We also show that the sensing platform described herein can be used for multiplexing detection of nucleic acid sequences.  相似文献   

4.
Hybrid materials with special structures are of great interest because of their superior properties compared with their pure counterparts. Hybrid polyaniline (PANi) nanofibers with integrated Pt nanoflowers are studied in this research. PANi is prepared by in situ polymerization of aniline on an electrospun nanofiber template in an acidic solution with ammonium persulfate (APS) as the oxidant. Pt nanoflowers are further electrodeposited onto the PANi nanofibers backbone by cyclic voltammetry (CV), resulting in novel functionalized hybrid nanofibers. The coverage of Pt nanoflowers on PANi nanofibers can be facilely controlled by adjusting the electrodeposition conditions. The factors affecting Pt nanoflowers formation are further investigated. As a demonstration, urease is immobilized onto the Pt/PANi hybrid nanofibers and the composite was employed as the sensing platform for urea detection in a flow-injection-analysis (FIA) system. The detection of urea shows a wide linear range (up to 20 mM), a good limit of detection of 10 μM (S/N=3), and an excellent anti-interference property against chloride ion. In addition, it was found that the response to urea was attributed not only to the conductivity change of PANi due to the interaction between PANi and ammonia (liberated from the enzymatic reaction), but also to the interaction between Pt nanoflowers and amine groups in urea. The strategy developed in this study can be extended to synthesize other composite nanofibers consisting of conducting polymer and metal nanoparticles for a wide range of sensing applications.  相似文献   

5.

Metal-enhanced fluorescence (MEF) phenomenon has shown a promising potential in the field of fluorescence-based biological sensing. In this study, we optimized the electroless metal deposition method to fabricate silver dendritic nanostructures as effective MEF active substrates. Then, an aptasensor was developed for thrombin detection using the established surfaces. For this purpose, thiolated 29-mer thrombin-binding aptamers (TBA29 (12T) SH) as capturing aptamer were immobilized on the surface of silver dendritic nanostructures, then thrombin was sandwiched between the capturing aptamer and Cy5-labeled 15-mer thrombin aptamer (TBA15-Cy5). Quantitative analysis was performed through fluorescence signal measurement. The established aptasensor presented satisfactory sensitivity and selectivity and exhibited a limit of detection (LOD) as low as 32 pM. This aptasensor was also able to detect thrombin in the human serum at picomolar levels. Furthermore, the ease and relatively low-cost of fabrication of this platform introduce it as a tool with great potential for the clinical diagnosis of diseases and also for improving sensitivity of a variety of technologies which exploit fluorescent dyes for analyte detection, at ultra-trace levels, in complex matrices.

  相似文献   

6.
In previous work, we reported that plasma membrane potential depolarization (PMPD) provokes cortical F-actin remodeling in bovine corneal endothelial (BCE) cells in culture, which eventually leads to the appearance of intercellular gaps. In kidney epithelial cells it has been shown that PMPD determines an extracellular-signal-regulated kinase (ERK)/Rho-dependent increase in diphosphorylated myosin light chain (ppMLC). The present study investigated the signaling pathways involved in the response of BCE cells to PMPD. Differently to renal epithelial cells, we observed that PMPD leads to a decrease in monophosphorylated MLC (pMLC) without affecting diphosphorylated MLC. Also, that the pMLC reduction is a consequence of cyclic adenosine 3′,5′-monophosphate (cAMP)/protein kinase A (PKA) activation. In addition, we found evidence that the cAMP increase mostly depends on soluble adenylyl cyclase activity. Inhibition of this enzyme reduces the effect of PMPD on the cAMP rise, F-actin remodeling, and pMLC decrease. No changes in phosho-ERK were observed, although we could determine that RhoA undergoes activation. Our results suggested that active RhoA is not involved in the intercellular gap formation. Overall, the findings of this study support the view that, differently to renal epithelial cells, in BCE cells PMPD determines cytoskeletal reorganization via activation of the cAMP/PKA pathway.  相似文献   

7.
Zhang Y  Luo Y  Tian J  Asiri AM  Al-Youbi AO  Sun X 《PloS one》2012,7(1):e30426
In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.  相似文献   

8.
Chiral effects have been observed from the interaction of chiral plasmonics nanostructures with light. Such nanostructures enhance the chiral response of molecules and provide an ideal platform for biological and chemical sensing. Here, we investigate the chiral switching effects of an array of subwavelength nanostructures with a unit cell composed of four double-layered nanostrips arranged to be rotationally symmetric. We observe chiral switching leading to a change in circular dichroism (CD) signature when the mutual angle between the first and second layer increases from 0° to 90° with respect to each other. This mutual angle can be manipulated to switch the handedness of the nanostructure and cause a change in the outgoing light. We also investigated the field distribution of each mode when circularly polarized light is normally incident into the structure. These modes can be categorized into longitudinal and transverse modes depending on the orientation of their dipole moments. The mode studies clearly show the nature of each plasmonics mode.  相似文献   

9.
We have designed a versatile molecular beacon (MB)-like probe for the multiplex sensing of targets such as sequence-specific DNA, protein, metal ions and small molecule compounds based on the self-assembled ssDNA-graphene oxide (ssDNA-GO) architecture. The probe employs fluorescence "on/off" switching strategy in a single step in homogeneous solution. Compared to traditional molecular beacons, the proposed design is simple to prepare and manipulate and has little background interference, but still gives superior sensitivity and rapid response. More importantly, this ssDNA-GO architecture can serve as a universal beacon platform by simply changing the types of ssDNA sequences for the different targets. In this work, the ssDNA-GO architecture probe has been successfully applied in the multiplex detection of sequence-specific DNA, thrombin, Ag(+), Hg(2+) and cysteine, and the limit of detection was 1 nM, 5 nM, 20 nM, 5.7 nM and 60 nM, respectively. The results demonstrate that the ssDNA-GO architecture can be an excellent and versatile platform for sensing multiplex analytes, easily replacing the universal molecular beacon.  相似文献   

10.
Choline, as a marker of cholinergic activity in brain tissue, is very important in biological and clinical analysis, especially in the clinical detection of the neurodegenerative disorders disease. This work presents an electrochemical approach for the detection of choline based on prussian blue modified iron phosphate nanostructures (PB-FePO(4)). The obtained nanostructures showed a good catalysis toward the electroreduction of H(2)O(2), and an amperometric choline biosensor was developed by immobilizing choline oxidase on the PB-FePO(4) nanostructures. The biosensor exhibited a rapid response (ca. 2s), low detection limit (0.4±0.05 μM), wide linear range (2 μM to 3.2 mM), high sensitivity (~75.2 μAm M(-1) cm(-2)), as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid and 4-acetamidophenol did not cause obvious interference due to the low detection potential (-0.05 V versus saturated calomel electrode). This nanostructure could be used as a promise platform for the construction of other oxidase-based biosensors.  相似文献   

11.
A novel label-free immunosensing strategy for sensitive detection of tumor necrosis factor-alpha antigen (TNF-α) via surface-initiated atom transfer radical polymerization (SI-ATRP) was proposed. In this strategy, the Au electrode was first modified by consecutive SI-ATRP of ferrocenylmethyl methacrylate (FMMA) and glycidyl methacrylate (GMA), and TNF-α antibody was coupled to the copolymer segment of GMA (PGMA) by aqueous carbodiimide coupling reaction. Subsequently, the target TNF-α antigen was captured onto the Au electrode surface through immunoreaction. The whole process was confirmed by scanning electron microscopy (SEM) and surface plasmon resonance (SPR) measurements. With introduction of redox polymer segment of FMMA (PFMMA) as electron-transfer mediator, the antigen-coupled Au electrode exhibited well electrochemical behavior, as revealed by cyclic voltammetry measurement. This provided a sensing platform for sensitive detection of TNF-α with a low detection limit of 3.9pgmL(-1). Furthermore, the "living" characteristics of the ATRP process can not only be readily controlled but also allow further surface functionalization of the electrodes, thus the proposed method presented a way for label-free and flexible detection of biomolecules.  相似文献   

12.
生物多样性近地面遥感监测: 应用现状与前景展望   总被引:1,自引:0,他引:1  
近年来中国生物多样性监测与研究网络(Sino BON)建设得到了快速发展, 为我国生物多样性长期监测和研究提供了良好的平台条件。其中, 以激光雷达技术为核心的近地面遥感平台, 作为Sino BON综合监测与管理中心的重要组成部分, 已研发形成了较为成熟的软、硬件技术体系, 可以提供林下地形建模, 林分高度、林分表面结构, 林窗或内部分界线, 郁闭度动态, 植被群落划分、群落内部精细空间结构, 单木高度与胸径, 冠层形态、周长和盖度, 物种识别, 亚米级三维景观图等数字产品, 从而能够为国家相关部门和研究单位开展多种时空尺度的生物多样性监测、评价和保护工作提供精准、高效的技术支持。本文首先介绍了遥感技术在生物多样性研究中的应用发展历史及最新趋势。然后在生物多样性遥感监测直接和间接两种方法研究进展基础之上, 总结了从遥感数据中可提取的重要生物多样性指标, 以及选择不同类型遥感数据源时需要考虑的时空尺度信息。在详细阐述NEON、CEOS、GEO BON等国际合作组织推动遥感技术开展生物多样性监测的过程中指明: 以无人机为代表的近地面遥感平台具有机动灵活、高效低廉和高分辨率的特点, 可在卫星平台、载人航空平台和地面常规调查平台之间架构起生物多样性信息尺度推绎不可或缺的中间桥梁, 将是未来生物多样性监测的一个重要手段。最后, 文章指出: Sino BON近地面遥感平台的逐步建设完善将为我国生物多样性监测提供全方位的立体定量化信息, 在促进我国生物多样性监测网络向跨尺度等级动态系统监测、多源信息集成、智能决策与服务的平台方向发展意义重大。  相似文献   

13.
The aim of our work is to furnish enzymes with polymerization ability by creating fusion constructs with the polymerizable protein, flagellin, the main component of bacterial flagellar filaments. The D3 domain of flagellin, exposed on the surface of flagellar filaments, is formed by the hypervariable central portion of the polypeptide chain. D3 is not essential for filament formation. The concept in this project is to replace the D3 domain with suitable monomeric enzymes without adversely affecting polymerization ability, and to assemble these chimeric flagellins into tubular nanostructures. To test the feasibility of this approach, xylanase A (XynA) from B. subtilis was chosen as a model enzyme for insertion into the central part of flagellin. With the help of genetic engineering, a fusion construct was created in which the D3 domain was replaced by XynA. The flagellin-XynA chimera exhibited catalytic activity as well as polymerization ability. These results demonstrate that polymerization ability can be introduced into various proteins, and building blocks for rationally designed assembly of filamentous nanostructures can be created.  相似文献   

14.
Crop 3D—a LiDAR based platform for 3D high-throughput crop phenotyping   总被引:4,自引:0,他引:4  
With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis.As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging(LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional(3 D) data accurately,and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China,we developed a high-throughput crop phenotyping platform, named Crop 3 D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3 D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs,functions and testing results of the Crop 3 D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.  相似文献   

15.
In this paper, we developed a simple method to detect fungi toxin (ochratoxin A) produced by Aspergillus Ochraceus and Penicillium verrucosumm, utilizing graphene oxide as quencher which can quench the fluorescence of FAM (carboxyfluorescein) attached to toxin-specific aptamer. By optimizing the experimental conditions, we obtained the detection limit of our sensing platform based on bare graphene oxide to be 1.9 μM with a linear detection range from 2 μM to 35 μM. Selectivity of this sensing platform has been carefully investigated; the results showed that this sensor specifically responded to ochratoxin A without interference from other structure analogues (N-acetyl-l-phenylalanine and warfarin) and with only limited interference from ochratoxin B. Experimental data showed that ochratoxin A as well as other structure analogues could adsorb onto the graphene oxide. As compared to the non-protected graphene oxide based biosensor, PVP-protected graphene oxide reveals much lower detection limit (21.8 nM) by two orders of magnitude under the optimized ratio of graphene oxide to PVP concentration. This sensor has also been challenged by testing 1% red wine containing buffer solution spiked with a series of concentration of ochratoxin A.  相似文献   

16.
《Biophysical journal》2022,121(24):4882-4891
DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.  相似文献   

17.
We have synthesized anisotropic flower-like sliver nanostructures with multiple silver nanopetal-like structures, which are found to be protruding from the core body, in large scale, using single step galvanic reaction of ferrocene (FeCp2) with silver nitrate in presence of poly(vinyl pyrrolidone). The non-uniformly distributed multiple petal-like structures are found to be self-assembled by stacking layer by layer to form the anisotropic flower-like silver nanostructures. These anisotropic silver nanostructures constitute an active substrate material for surface-enhanced Raman scattering, which was confirmed from representative experiments using Rhodamine 6G and melamine (2,4,6-triamino-1,3,5-triazine) as probe molecules. Moreover, the stability of the synthesized AgNS has also been investigated. The results suggested that these AgNS exhibited excellent stability even after 1 month of storage and even after 3 months they show surface-enhanced Raman scattering effect. Therefore, our study exhibits highly stable silver nanostructures with unique optical properties. We believe this synthetic route for the formation of self-assembled anisotropic silver nanostructures can be a general synthetic platform to fabricate metal nanostructures with complex morphologies.  相似文献   

18.
随着人口的持续增长, 人类经济活动对自然资源的利用强度不断升级以及全球气候变暖, 全球物种正以前所未有的速度丧失, 生物多样性成为了全球关注的热点问题。传统生物多样性研究以地面调查方法为主, 重点关注物种或样地水平, 但无法满足景观尺度、区域尺度以及全球尺度的生物多样性保护和评估需求。遥感作为获取生物多样性信息的另一种手段, 近年来在生物多样性领域发展迅速, 其覆盖广、序列性以及可重复性等特点使之在大尺度生物多样性监测和制图以及评估方面具有极大优势。本文主要通过文献收集整理, 从观测手段、研究尺度、观测对象和生物多样性关注点等方面综述了遥感在生物多样性研究中的应用现状, 重点分析不同遥感平台的技术优势和局限性, 并探讨了未来遥感在生物多样性研究的应用趋势。遥感平台按观测高度可分为近地面遥感、航空遥感和卫星遥感, 能够获取样地-景观-区域-洲际-全球尺度的生物多样性信息。星载平台在生物多样性研究中应用最多, 航空遥感的应用研究偏少主要受飞行成本限制。近地面遥感作为一个新兴平台, 能够直接观测到物种的个体, 获取生物多样性关注的物种和种群信息, 是未来遥感在生物多样性应用中的发展方向。虽然遥感技术在生物多样性研究中的应用存在一定的局限性, 未来随着传感器发展和多源数据融合技术的完善, 遥感能更好地从多个尺度、全方位地服务于生物多样性保护和评估。  相似文献   

19.
We report on another alternative sensing platform for the detection of protein biomarker (PSA-ACT complex) based on homogenous growth of Au nanocrystals in solution phase. The immuno-recognition event is translated into the gold nanoparticle growth signal which can be intuitively recognized by an unaided eye, or quantitatively measured by an UV-vis spectrophotometric analysis. Surface plasmonic signature and kinetics of the Au nanogrowth in the homogenous phase containing of HAuCl(4), AA, and CTAB have also been studied to provide suitable parameters for the immunoassay. As a result, detection limit of PSA-ACT complex was determined to be 10fM. The result indicated that this is a very sensitive, robust, simple, and economic strategy to detect protein biomarkers, and it has great potential to detect other biological interactions.  相似文献   

20.
A simple microwave‐assisted solvothermal method was used to prepare fluorescent nitrogen‐doped carbon dots (N‐CDs) with high fluorescence quantum yield (79.63%) using citric acid and N‐(2‐hydroxyethyl)ethylenediamine as starting materials. The PVAm‐g‐N‐CDs grafted products were synthesized by amide bond formation between the carboxylic groups of N‐CDs and amine groups of polyvinylamine (PVAm). Fluorescent hydrogel films (PVAm‐g‐N‐CDs/PAM) were synthesized by interpenetration polymer network polymerization of PVAm‐g‐N‐CDs and acrylamide (AM). When used for ion detection, we found that the fluorescence of the hydrogel films was clearly quenched by addition of Hg2+. Repeatability tests on using the hydrogel films for Hg2+ detection showed that they could be applied at least three times. The PVAm‐g‐N‐CDs/PAM could serve as an effective fluorescent sensing platform for sensitive detection of Hg2+ ions with a detection limit of 0.089 μmol/L. This work may offer a new approach for developing recoverable and sensitive N‐CDs‐based sensors for biological and environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号