首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
White-nose Syndrome (WNS) is the primary cause of over-winter mortality for little brown (Myotis lucifugus), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats, and is due to cutaneous infection with the fungus Pseudogymnoascus (Geomyces) destructans (Pd). Cutaneous infection with P. destructans disrupts torpor patterns, which is thought to lead to a premature depletion of body fat reserve. Field studies were conducted at 3 WNS-affected hibernation sites to determine if big brown bats (Eptesicus fuscus) are resistant to Pd. Radio telemetry studies were conducted during 2 winters to determine the torpor patterns of 23 free-ranging E. fuscus hibernating at a site where Pd occurs. The body fat contents of free-ranging E. fuscus and M. lucifugus during hibernation at 2 different WNS-affected sites were also determined. The numbers of bats hibernating at the same site was determined during both: a) 4–7 years prior to the arrival of Pd, and, b) 2–3 years after it first appeared at this site. The torpor bouts of big brown bats hibernating at a WNS-affected site were not significantly different in length from those previously reported for this species. The mean body fat content of E. fuscus in February was nearly twice that of M. lucifugus hibernating at the same WNS-affected sites during this month. The number of M. lucifugus hibernating at one site decreased by 99.6% after P. destructans first appeared, whereas the number of E. fuscus hibernating there actually increased by 43% during the same period. None of the E. fuscus collected during this study had any visible fungal growth or lesions on their skin, whereas virtually all the M. lucifugus collected had visible fungal growth on their wings, muzzle, and ears. These findings indicate that big brown bats are resistant to WNS.  相似文献   

2.
Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-nose syndrome (WNS) in North America. We fitted 24 Rafinesque’s big-eared bats (Corynorhinus rafinesquii) with temperature-sensitive radio-transmitters, and monitored 128 PIT-tagged big-eared bats, during the winter months of 2010 to 2012. We tested the hypothesis that Rafinesque’s big-eared bats use torpor less often than values reported for other North American cave-hibernators. Additionally, we tested the hypothesis that Rafinesque’s big-eared bats arouse on winter nights more suitable for nocturnal foraging. Radio-tagged bats used short (2.4 d ± 0.3 (SE)), shallow (13.9°C ± 0.6) torpor bouts and switched roosts every 4.1 d ± 0.6. Probability of arousal from torpor increased linearly with ambient temperature at sunset (P<0.0001), and 83% (n = 86) of arousals occurred within 1 hr of sunset. Activity of PIT-tagged bats at an artificial maternity/hibernaculum roost between November and March was positively correlated with ambient temperature at sunset (P<0.0001), with males more active at the roost than females. These data show Rafinesque’s big-eared bat is a shallow hibernator and is relatively active during winter. We hypothesize that winter activity patterns provide Corynorhinus species with an ecological and physiological defense against the fungus causing WNS, and that these bats may be better suited to withstand fungal infection than other cave-hibernating bat species in eastern North America.  相似文献   

3.
C Stawski  F Geiser 《PloS one》2012,7(7):e40278
The proportion of organisms exposed to warm conditions is predicted to increase during global warming. To better understand how bats might respond to climate change, we aimed to obtain the first data on how use of torpor, a crucial survival strategy of small bats, is affected by temperature in the tropics. Over two mild winters, tropical free-ranging bats (Nyctophilus bifax, 10 g, n = 13) used torpor on 95% of study days and were torpid for 33.5±18.8% of 113 days measured. Torpor duration was temperature-dependent and an increase in ambient temperature by the predicted 2°C for the 21st century would decrease the time in torpor to 21.8%. However, comparisons among Nyctophilus populations show that regional phenotypic plasticity attenuates temperature effects on torpor patterns. Our data suggest that heterothermy is important for energy budgeting of bats even under warm conditions and that flexible torpor use will enhance bats’ chance of survival during climate change.  相似文献   

4.
An estimated 5.7 million or more bats died in North America between 2006 and 2012 due to infection with the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) during hibernation. The behavioral and physiological changes associated with hibernation leave bats vulnerable to WNS, but the persistence of bats within the contaminated regions of North America suggests that survival might vary predictably among individuals or in relation to environmental conditions. To investigate variables influencing WNS mortality, we conducted a captive study of 147 little brown myotis (Myotis lucifugus) inoculated with 0, 500, 5 000, 50 000, or 500 000 Pd conidia and hibernated for five months at either 4 or 10°C. We found that female bats were significantly more likely to survive hibernation, as were bats hibernated at 4°C, and bats with greater body condition at the start of hibernation. Although all bats inoculated with Pd exhibited shorter torpor bouts compared to controls, a characteristic of WNS, only bats inoculated with 500 conidia had significantly lower survival odds compared to controls. These data show that host and environmental characteristics are significant predictors of WNS mortality, and that exposure to up to 500 conidia is sufficient to cause a fatal infection. These results also illustrate a need to quantify dynamics of Pd exposure in free-ranging bats, as dynamics of WNS produced in captive studies inoculating bats with several hundred thousand conidia may differ from those in the wild.  相似文献   

5.
Populations of hibernating bats in the northeastern USA are being decimated by white-nose syndrome (WNS). Although the ultimate cause of death is unknown, one possibility is the premature depletion of fat reserves. The immune system is suppressed during hibernation. Although an elevated body temperature (T b) may facilitate an immune response, it also accelerates the depletion of fat stores. We sought to determine if little brown bats Myotis lucifugus Le Conte 1831 hibernating in WNS-affected hibernacula have an elevated T b and reduced fat stores, relative to WNS-unaffected Indiana bats Myotis sodalis Miller and Allen 1928 from Indiana. We found that WNS-affected M. lucifugus maintain a slightly, but significantly, higher skin temperature (T skin), relative to surrounding rock temperature, than do M. sodalis from Indiana. We also report that WNS-affected M. lucifugus weigh significantly less than M. lucifugus from a hibernaculum outside of the WNS region. However, the difference in T skin is minimal and we argue that the elevated T b is unlikely to explain the emaciation documented in WNS-affected bats.  相似文献   

6.
White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy conservation and immunological responses. Relationships between immune activity and torpor, including associated energy expenditure, are likely critical components in the development of WNS.  相似文献   

7.
8.
Prior to the introduction of white‐nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS‐affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT‐tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from −1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small‐footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid‐hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid‐hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium–high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid‐hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species‐specific conservation actions.  相似文献   

9.
There are 1,111 species of pholcid spiders, of which less than 2% have published karyotypes. Our aim in this study was to determine the karyotypes and sex determination mechanisms of two species of pholcids: Physocyclus mexicanus (Banks, 1898) and Holocnemus pluchei (Scopoli, 1763), and to observe sex chromosome behavior during meiosis. We constructed karyotypes for P. mexicanus and H. pluchei using information from both living and fixed cells. We found that P. mexicanus has a chromosome number of 2n = 15 in males and 2n = 16 in females with X0-XX sex determination, like other members of the genus Physocyclus. H. pluchei has a chromosome number of 2n = 28 in males and 2n = 28 in females with XY-XX sex determination, which is substantially different from its closest relatives. These data contribute to our knowledge of the evolution of this large and geographically ubiquitous family, and are the first evidence of XY-XX sex determination in pholcids.  相似文献   

10.
White‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti‐Pd immune responses, indicating pathogen‐mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre‐ (Wisconsin) and post‐ (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014–2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1–5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre‐ and post‐WNS populations, indicating no signal of selection on MHC genes. However, post‐WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.  相似文献   

11.
White-nose syndrome (WNS) is having an unprecedented impact on hibernating bat populations in the eastern United States. While most studies have focused on widespread mortality observed at winter hibernacula, few have examined the consequences of wing damage that has been observed among those bats that survive hibernation. Given that WNS-related wing damage may lead to life-threatening changes in wing function, we tested the hypothesis that reduced abundance of free-ranging little brown myotis (Myotis lucifugus) with severe wing damage as the summer progresses is due to healing of wing tissue. Photographs of captured and recaptured adult females were examined for wing damage and healing rates were calculated for each category of wing damage index (WDI = 0–3). We found that free-ranging bats with severe wing damage were able to heal to a lower WDI score within 2 weeks. Bats with the most severe wing damage had faster healing rates than did individuals with less damage. We also found a significant relationship between body condition and WDI for adult females captured in the early weeks of the active season. Our results support the hypothesis that some bats can heal from severe wing damage during the active season, and thus may not experience increased mortality associated with reduced functions of wings. We urge researchers and wildlife managers to use caution when interpreting data on WDI to assess the impact of WNS on bat populations, especially during the later months of the active season.  相似文献   

12.
Gail R. Michener 《Oecologia》1992,89(3):397-406
Summary Over-winter torpor patterns of Richardson's ground squirrels hibernating in southern Alberta were monitored with temperature-sensitive radiocollars to determine if these patterns differed between males and females in a manner related to the greater costs of mating effort by males than females. The hibernation season (from immergence to emergence) was composed of three periods: post-immergence euthermy, heterothermy, and pre-emergence euthermy. The hibernation season was shorter for juveniles than adults both among males (< 150 versus 234 days) and females (185 versus 231 days), a reflection of the later immergence into hibernation by juveniles. However, regardless of the absolute duration of hibernation, heterothermy accounted for a smaller proportion of the hibernation season of males (93±5%) than females (98±1%) and, within the heterothermal period, males had shorter torpor bouts and longer inter-torpor arousals. Overall, males spent a smaller proportion of the hibernation season in torpor (85±6%) than females (92±1%). This sexual difference was largely attributable to the longer duration of preemergence euthermy for males than females. Males terminated torpor in January and February, when hibernacula were at their coldest, then remained euthermic for 8.8 days (range 0.5–25.0 days) before emergence. In contrast, females terminated torpor in March, when hibernaculum temperatures were increasing, then remained euthermic for only 1.1 days (range 0.5–2.0 days) before emergence. Males lost less mass per euthermic day during hibernation than females (7.0 versus 9.3 g/day). Males and females hibernated at similar depths (56 cm), but males had larger chambers than females (18 versus 16 cm3/g). Many males, but no females, cached seeds in the hibernaculum. Males met the costs of thermogenesis and euthermy from a combination of fat reserves and food caches, whereas females relied solely on fat. Access to food caches permitted males to terminate torpor several weeks in advance of emergence, during which time they recouped mass and developed sperm in preparation for the forthcoming mating season.  相似文献   

13.
White‐nose syndrome (WNS) has decimated hibernating bat populations across eastern and central North America for over a decade. Disease severity is driven by the interaction between bat characteristics, the cold‐loving fungal agent, and the hibernation environment. While we further improve hibernation energetics models, we have yet to examine how spatial heterogeneity in host traits is linked to survival in this disease system. Here, we develop predictive spatial models of body mass for the little brown myotis (Myotis lucifugus) and reassess previous definitions of the duration of hibernation of this species. Using data from published literature, public databases, local experts, and our own fieldwork, we fit a series of generalized linear models with hypothesized abiotic drivers to create distribution‐wide predictions of prehibernation body fat and hibernation duration. Our results provide improved estimations of hibernation duration and identify a scaling relationship between body mass and body fat; this relationship allows for the first continuous estimates of prehibernation body mass and fat across the species'' distribution. We used these results to inform a hibernation energetic model to create spatially varying fat use estimates for M. lucifugus. These results predict WNS mortality of M. lucifugus populations in western North America may be comparable to the substantial die‐off observed in eastern and central populations.  相似文献   

14.
  1. White‐nose syndrome (WNS) has caused the death of millions of bats, but the impacts have been more difficult to identify in western North America. Understanding how WNS, or other threats, impacts western bats may require monitoring other roosts, such as maternity roosts and night roosts, where bats aggregate in large numbers.
  2. Little brown bats (Myotis lucifugus) are experiencing some of the greatest declines from WNS. Estimating survival and understanding population dynamics can provide valuable data for assessing population declines and informing conservation efforts.
  3. We conducted a 5‐year mark–recapture study of two M. lucifugus roosts in Colorado. We used the robust design model to estimate apparent survival, fidelity, and abundance to understand population dynamics, and environmental covariates to understand how summer and winter weather conditions impact adult female survival. We compared the fidelity and capture probability of M. lucifugus between colonies to understand how bats use such roosts.
  4. Overwinter survival increased with the number of days with temperatures below freezing (β > 0.100, SE = 0.003) and decreased with the number of days with snow cover (β < −0.40, SE < 0.13). Adult female fidelity was higher at one maternity roost than the other. Overwinter and oversummer adult female survival was high (>0.90), and based on survival estimates and fungal‐swabbing results, we believe these populations have yet to experience WNS.
  5. Recapture of M. lucifugus using antennas that continuously read passive integrated transponder tags allows rigorous estimation of bat population parameters that can elucidate trends in abundance and changes in survival. Monitoring populations at summer roosts can provide unique population ecology data that monitoring hibernacula alone may not. Because few adult males are captured at maternity colonies, and juvenile males have low fidelity, additional effort should focus on understanding male M. lucifugus population dynamics.
  相似文献   

15.
Temperate zone bats can use daily torpor as a means of saving energy. Some argue, however, that torpor is costly for both males and females and that individuals should only use it during times of poor foraging conditions. Others hypothesize that the costs are greater for females and that males should enter torpor more regularly. We tested these alternative hypotheses by using temperature-sensitive radiotransmitters to monitor use of torpor and foraging by free-ranging big brown bats ( Eptesicus fuscus ). During the pregnancy period, males used torpor at night more and foraged less often than did females. Males also went into deep torpor more often and remained in torpor longer than did females. When they foraged, males and females were away from the roosts for equal periods of time. During the lactation period, males and females rarely failed to forage and foraging times were again no different between the sexes, although males may roost at night away from the maternity colonies. Males again used torpor and deep torpor more often and for longer than females did. These results support the hypothesis that the fitness costs of using torpor are lower for males than for reproductive females and that males regularly use torpor as an energy-saving mechanism. Females enter torpor only when foraging conditions are poor, presumably because torpor prolongs gestation and slows neonatal growth thereby leaving less time for females and their young to prepare for hibernation.  相似文献   

16.
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.  相似文献   

17.
18.
In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual’s reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.  相似文献   

19.
Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development.  相似文献   

20.
We used a non-invasive TOBEC method (Total Body Electric Conductivity) to estimate lean body mass and fat content in mouse-eared batsMyotis myotis (Borkhausen, 1797) hibernating in Poznañ Forts (W Poland) and in a semi-natural cave-mine Miedzianka (SE Poland). In December, fat content averaged 5.5 g in females (body mass = 29.4 g) and 5.3 g in males (body mass = 28.4 g). At the end of hibernation (April), fat content averaged 2.2 g in females (body mass = 25.6 g) and 1.4 g in males (body mass = 23.7 g). Fat content did not differ between the localities either in December or in April, but the pattern of changes of fat content was different. We calculated the rate of energy expenditure in hibernating bats using two methods, based on independent samples (fat content in first-time captured individuals) and based on paired observations (changes of fat content in re-captured individuals), and discussed problems associated with the two approaches. Both methods show that the bats need about 4.9 g of fat (191 kJ) to sustain a 165-day hibernation. However, the rate of fat usage varied considerably between the sites and hibernation phase. Although the average amount of fat remaining in April would be sufficient to support at least six more weeks of hibernation, the level of reserves was close to zero in some individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号