首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ABSTRACT: BACKGROUND: Cerebral ischemia has been shown to induce activation of matrix metalloproteinases (MMPs), particularly MMP-9, which is associated with impairment of the neurovasculature, resulting in blood-brain barrier breakdown, hemorrhage and neurodegeneration. We previously reported that the thiirane inhibitor SB-3CT, which is selective for gelatinases (MMP-2 and 9), could antagonize neuronal apoptosis after transient focal cerebral ischemia. RESULTS: Here, we used a fibrin-rich clot to occlude the middle cerebral artery (MCA) and assessed the effects of SB-3CT on the neurovasculature. Results show that neurobehavioral deficits and infarct volumes induced by embolic ischemia are comparable to those induced by the filament-occluded transient MCA model. Confocal microscopy indicated embolus-blocked brain microvasculature and neuronal cell death. Post-ischemic SB-3CT treatment attenuated infarct volume, ameliorated neurobehavioral outcomes, and antagonized the increases in levels of proform and activated MMP-9. Embolic ischemia caused degradation of the neurovascular matrix component laminin and tight-junction protein ZO-1, contraction of pericytes, and loss of lectin-positive brain microvessels. Despite the presence of the embolus, SB-3CT mitigated these outcomes and reduced hemorrhagic volumes. Interestingly, SB-3CT treatment for seven days protected against neuronal laminin degradation and protected neurons from ischemic cell death. CONCLUSION: These results demonstrate considerable promise for the thiirane class of selective gelatinase inhibitors as potential therapeutic agents in stroke therapy.  相似文献   

3.
4.
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60 min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24 hrs after reperfusion. Blood–brain-barrier (BBB) integrity and activated cellular signaling were examined at 3 hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.  相似文献   

5.
Wang X  Lee SR  Arai K  Lee SR  Tsuji K  Rebeck GW  Lo EH 《Nature medicine》2003,9(10):1313-1317
Although thrombolysis with tissue plasminogen activator (tPA) is a stroke therapy approved by the US Food and Drug Administration, its efficacy may be limited by neurotoxic side effects. Recently, proteolytic damage involving matrix metalloproteinases (MMPs) have been implicated. In experimental embolic stroke models, MMP inhibitors decreased cerebral hemorrhage and injury after treatment with tPA. MMPs comprise a family of zinc endopeptidases that can modify several components of the extracellular matrix. In particular, the gelatinases MMP-2 and MMP-9 can degrade neurovascular matrix integrity. MMP-9 promotes neuronal death by disrupting cell-matrix interactions, and MMP-9 knockout mice have reduced blood-brain barrier leakage and infarction after cerebral ischemia. Hence it is possible that tPA upregulates MMPs in the brain, and that subsequent matrix degradation causes brain injury. Here we show that tPA upregulates MMP-9 in cell culture and in vivo. MMP-9 levels were lower in tPA knockouts compared with wild-type mice after focal cerebral ischemia. In human cerebral microvascular endothelial cells, MMP-9 was upregulated when recombinant tPA was added. RNA interference (RNAi) suggested that this response was mediated by the low-density lipoprotein receptor-related protein (LRP), which avidly binds tPA and possesses signaling properties. Targeting the tPA-LRP signaling pathway in brain may offer new approaches for decreasing neurotoxicity and improving stroke therapy.  相似文献   

6.
Focal cerebral ischemia and reperfusion initiates complex cellular and molecular interactions that lead to either cell repair or destruction. In earlier work, we found that activin A is an early gene response to cerebral ischemia and supports cortical neuron survival in vitro. In this study, the ability of exogenous activin A to attenuate injury from transient middle cerebral artery occlusion was tested in adult mice. Intracerebroventricular administration of activin A prior to middle cerebral artery occlusion reduced infarct volume apparent 1 day after experimental stroke. A single activin A administration at 6 h following ischemia/reperfusion reduced lesion volumes at 1 and 3 days and led to improved neurobehavior. Moreover, activin A treatment spared neurons within the ischemic hemisphere and led to a concomitant reduction in microglial activation. Activation of the stress-responsive kinases p38 and c- jun N-terminal kinase implicated in neuronal apoptosis after stroke was reduced following activin A treatment. Together these findings suggest that activin A promotes tissue survival after focal cerebral ischemia/reperfusion with an extended therapeutic window.  相似文献   

7.
We have previously identified an increased susceptibility of glutathione peroxidase-1 (Gpx1)-/- mice to neuronal apoptosis following mid-cerebral artery (MCA) occlusion. This study was designed to elucidate the mechanisms involved in elevated neuronal cell death arising from an altered endogenous oxidant state. This was addressed in both an in vitro and in vivo model of oxidative stress in the form of exogenous H2O2 and cerebral ischaemia, respectively. Increased levels of cell death were detected in primary neurons lacking Gpx1 following the addition of exogenous H2O2. This increased apoptosis correlated with a down-regulation in the activation of the phospho-inositide 3-kinase [PI3K]-Akt survival pathway. The importance of this pathway in protecting against H2O2-induced cell death was highlighted by the increased susceptibility of wildtype neurons to apoptosis when treated with the PI3K inhibitor, LY294002. The Gpx1-/- mice also demonstrated elevated neuronal cell death following MCA occlusion. Although Akt phosphorylation was detected in the Gpx1-/- brains, activation was not seen in later reperfusion events, as demonstrated in wildtype brains. Previous studies have highlighted the importance of Akt phosphorylation in protecting against neuronal cell death following cerebral ischaemia-reperfusion. Our results suggest that the increased susceptibility of Gpx1-/- neurons to H2O2-induced apoptosis and neuronal cell death in vivo following cerebral ischaemia-reperfusion injury can be attributed in part to diminished activation of Akt. Perturbations in key anti-apoptotic mechanisms as a result of an altered redox state may have implications in the study of oxidative stress-mediated neuropathologies.  相似文献   

8.
9.
Role of matrix metalloproteinases in delayed cortical responses after stroke   总被引:21,自引:0,他引:21  
Matrix metalloproteinases (MMPs) are zinc-endopeptidases with multifactorial actions in central nervous system (CNS) physiology and pathology. Accumulating data suggest that MMPs have a deleterious role in stroke. By degrading neurovascular matrix, MMPs promote injury of the blood-brain barrier, edema and hemorrhage. By disrupting cell-matrix signaling and homeostasis, MMPs trigger brain cell death. Hence, there is a movement toward the development of MMP inhibitors for acute stroke therapy. But MMPs may have a different role during delayed phases after stroke. Because MMPs modulate brain matrix, they may mediate beneficial plasticity and remodeling during stroke recovery. Here, we show that MMPs participate in delayed cortical responses after focal cerebral ischemia in rats. MMP-9 is upregulated in peri-infarct cortex at 7-14 days after stroke and is colocalized with markers of neurovascular remodeling. Treatment with MMP inhibitors at 7 days after stroke suppresses neurovascular remodeling, increases ischemic brain injury and impairs functional recovery at 14 days. MMP processing of bioavailable VEGF may be involved because inhibition of MMPs reduces endogenous VEGF signals, whereas additional treatment with exogenous VEGF prevents MMP inhibitor-induced worsening of infarction. These data suggest that, contrary to MMP inhibitor therapies for acute stroke, strategies that modulate MMPs may be needed for promoting stroke recovery.  相似文献   

10.
Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro‐inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up‐regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen‐glucose deprivation in brain cells. Persistent up‐regulation of complement component 3 expression was reduced in copper/zinc‐superoxide dismutase transgenic mice, and manganese‐superoxide dismutase knock‐out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N‐tert‐butyl‐α‐phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N‐tert‐butyl‐α‐phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen‐glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.  相似文献   

11.
To demonstrate the protective effects of Calpeptin as the Calpain inhibitor against focal cerebral ischemia–reperfusion injury in rats and to explore it’s possible mechanism. 96 rats were randomly divided into four groups. The model of middle cerebral artery occlusion was used for the research of focal cerebral ischemia. Using this animal model, the effects of Calpeptin on the neurological functions, infarction volume and infarction volume percentage of brain, Caspase-3 expression and neuronal apoptosis in hippocampal CA1 sector after focal cerebral ischemia–reperfusion injury in rats were investigated. The current results confirmed that Calpeptin as the Calpain inhibitor might paly an important role for neuroprotection against focal cerebral ischemia–reperfusion injury. Calpeptin could reduce the neuronal apoptosis in hippocampal CA1 sector when the rats was subjected to the focal cerebral ischemia–reperfusion, the potential mechanism might be related to the inhibition of the expression of Caspase-3 by Calpeptin. However, it is still unknown to what the exact mechanism of Calpeptin inhibits the activation of Caspase-3 in this process. Therefore, further research needs to be done to unravel the underlying mechanisms in the future.  相似文献   

12.
Neuronal apoptotic cell death plays an important role in many neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and ischemic stroke. Spatholobi Caulis (SC) has been widely used in traditional herbal medicine for the treatment of cancer, inflammation, viral infection, and anemia. However, the protective effects of SC extract (SCE) against apoptotic cell death in the brain have not been reported. We investigated the protective effects of SCE against neuronal injury etoposide-induced neurotoxicity and in rats subjected to focal transient ischemic stroke middle cerebral artery occlusion (MCAO) for 45 min, followed by 7 days of reperfusion. The in vitro study demonstrated that SCE protected cells against etoposide-induced cell viability loss in SH-SY5Y cells. Apoptotic phenotypes, such as cleaved PARP and caspase-3, and oxidative stress in etoposide-treated cells were ameliorated by SCE treatment. In MCAO-reperfusion injury, SCE promoted neuronal survival and level of brain-derived neurotrophic factor (BDNF) by reducing glial activation, oxidative stress, and apoptosis in the ipsilateral cortex. These results indicated that SCE exerted protective effects under etoposide treatment and in a MCAO-reperfusion model by reducing JNK and p38 MAPK activation. This study presents the first evidence that SCE has therapeutic potential for the treatment of ischemic stroke or neurological disorder-related cell death.  相似文献   

13.
Jeon D  Chu K  Jung KH  Kim M  Yoon BW  Lee CJ  Oh U  Shin HS 《Cell calcium》2008,43(5):482-491
Na(+)/Ca(2+) exchanger (NCX), by mediating Na(+) and Ca(2+) fluxes bi-directionally, assumes a role in controlling the Ca(2+) homeostasis in the ischemic brain. It has been suggested that the three isoforms of NCX (NCX1, 2 and 3) may be differentially involved in permanent cerebral ischemia. However, the role of NCX2 has not been defined in ischemic reperfusion injury after a transient focal cerebral ischemia. Furthermore, it is not known whether NCX2 imports or exports intracellular Ca(2+) ([Ca(2+)](i)) following ischemia and reperfusion. To define the role of NCX2 in ischemia and reperfusion, we examined mice lacking NCX2, in vivo and in vitro. After an in vitro ischemia, a significantly slower recovery in population spike amplitudes, a sustained elevation of [Ca(2+)](i) and an increased membrane depolarization were developed in the NCX2-deficient hippocampus. Moreover, a transient focal cerebral ischemia in vivo produced a larger infarction and more cell death in the NCX2-deficient mouse brain. In particular, in the wild type brain, NCX2-expressing neurons were largely spared from cell death after ischemia. Our results suggest that NCX2 exports Ca(2+) in ischemia and thus protects neuronal cells from death by reducing [Ca(2+)](i) in the adult mouse brain.  相似文献   

14.
We have investigated the role of the BH3-only pro-death Bcl-2 family protein, Bid, in ischemic neuronal death in a murine focal cerebral ischemia model. Wild-type and bid-deficient mice of inbred C57BL/6 background were subjected to 90-min ischemia induced by left middle cerebral artery occlusion followed by 72-h reperfusion. The volume of ischemic infarct was significantly smaller in the bid-deficient brains than in the wild-type brains, suggesting that Bid participated in the ischemic neuronal death. Indeed, following the ischemic treatment there was a significant reduction of apoptosis in the ischemic areas, particularly in the inner infarct border zone (the penumbra), of the bid-deficient brains. In addition, activation of Bid in the wild-type brains could be readily detected at approximately 3 h after ischemia, as evidenced by its proteolytic cleavage and translocation to the mitochondria as determined using Western blot analysis and immunofluorescence staining. Correspondingly, mitochondrial release of cytochrome c could be detected around the same time Bid was cleaved in the wild-type brains. However, no significant cytochrome c release was detected in the bid-deficient brains until 24 h later. This suggests that, although the mitochondrial apoptosis pathway might be activated by multiple mechanisms during focal cerebral ischemia, Bid is critical to its early activation. This notion was further supported by the finding that caspase-3 activation was severely impaired in the bid-deficient brains, whereas activation of caspase-8 was much less affected. Taken together, these data suggest that Bid is activated early in neuronal ischemia in a caspase-8-dependent fashion and that Bid is perhaps one of the earliest and most potent activators of the mitochondrial apoptosis pathway. Thus, the role of Bid in the induction of ischemic neuronal death may render this molecule an attractive target for future therapeutic intervention.  相似文献   

15.
Shin WH  Park SJ  Kim EJ 《Life sciences》2006,79(2):130-137
Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. The major pathobiological mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress, inflammation, and apoptosis. In the present report, we first investigated the protective effects of anthocyanins against focal cerebral ischemic injury in rats. The pretreatment of anthocyanins (300 mg/kg, p.o.) significantly reduced the brain infarct volume and a number of TUNEL positive cells caused by middle cerebral artery occlusion and reperfusion. In the immunohistochemical observation, anthocyanins remarkably reduced a number of phospho-c-Jun N-terminal kinase (p-JNK) and p53 immunopositive cells in the infarct area. Moreover, Western blotting analysis indicated that anthocyanins suppressed the activation of JNK and up-regulation of p53. Thus, our data suggested that anthocyanins reduced neuronal damage induced by focal cerebral ischemia through blocking the JNK and p53 signaling pathway. These findings suggest that the consumption of anthocyanins may have the possibility of protective effect against neurological disorders such as brain ischemia.  相似文献   

16.
Transduced Tat-SOD fusion protein protects against ischemic brain injury   总被引:7,自引:0,他引:7  
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD), is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that when Tat-SOD fusion protein is transduced into pancreatic beta cells it protects the beta cells from destruction by relieving oxidative stress in ROS-implicated diabetes (Eum et al., 2004). In the present study, we investigated the protective effects of Tat-SOD fusion protein against neuronal cell death and ischemic insults. When Tat-SOD was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Immunohistochemical analysis revealed that Tat-SOD injected intraperitoneally (i.p.) into mice has access to various tissues including brain neurons. When i.p. injected into gerbils, Tat-SOD prevented neuronal cell death in the hippocampus in response to transient fore-brain ischemia. These results suggest that Tat-SOD provides a strategy for therapeutic delivery in various hu-man diseases, including stroke, related to this anti-oxidant enzyme or to ROS.  相似文献   

17.
18.
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a “physiological” HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.  相似文献   

19.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

20.
Neuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.Subject terms: Apoptosis, Neuro-vascular interactions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号