首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The permeation of monovalent organic cations through adenosine 3,5-cyclic monophosphate-(cAMP) activated channels was studied by recording macroscopic currents in excised inside-out membrane patches from the dendritic knobs of isolated mammalian olfactory receptor neurons (ORNs). Current-voltage relations were measured when bathing solution Na+ was replaced by monovalent organic cations. Permeability ratios relative to Na+ ions were calculated from changes in reversal potentials. Some of the small organic cations tested included ammonium (NH 4 + ), hydroxylammonium and formamidinium, with relative permeability ratios of 1.41, 2.3 and 1.01 respectively. The larger methylated and ethylated ammonium ions studied included: DMA (dimethylammonium), TMA (tetramethylammonium) and TEA (tetraethylammonium) and they all had permeability ratios larger than 0.09. Even large cations such as choline, arginine and tris(hydroxymethyl)aminomethane (Tris) were appreciably permeant through the cAMP-activated channel with permeability ratios ranging from 0.19 to 0.7. The size of the permeating cations, as assessed by molecular weight, was a good predictor of the permeability. The permeability sequence of the cAMP-activated channel in our study was PNH4 > PNa > pDMA > pTMA > PCholine > PTEA. Higher permeability ratios of hydroxylammonium, arginine and tris(hydroxymethyl)aminomethane cannot be explained by ionic size alone. Our results indicate that: (i) cAMP-activated channels poorly select between monovalent cations; (ii) the pore dimension must be at least 6.5 × 6.5 Å, in order to allow TEA and Tris to permeate and (iii) molecular sieving must be an important mechanism for the permeation of large organic ions through the channels with specific ion binding playing a smaller role than in other structurally similar channels. In addition, the results clearly indicate that cyclic nucleotide-gated (CNG) channels in different cells are not the same, the olfactory CNG channel being different from that of the photoreceptors, particularly with respect to the permeation of large organic cations, which the ORN channels allow to permeate readily.This work was supported by the Australian Research Council of Australia.  相似文献   

2.
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel.  相似文献   

3.
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, the concentration dependence of the single-channel conductance, and a single-channel analysis of Mg2+ block all independently indicated that the NMDA receptor behaves as a singly-occupied channel. More precisely, there is one permeant cation at a time occupying the site or sites that are in the narrow region of the pore directly in the permeation pathway. Permeability-ratio measurements in mixtures of monovalent and divalent cations indicated that local charges in or near the pore do not produce a large local surface potential in physiologic solutions. In low ionic strength solutions, a local negative surface potential does influence the ionic environment near the pore, but in normal physiologic solutions the surface potential appears too small to significantly influence ion permeation. The results indicate that the mechanism for the high Ca2+ conductance of the NMDA receptor channel is not the same as for the voltage-dependent Ca2+ channel (VDCC). The VDCC has two high affinity, interacting binding sites that provide high Ca2+ selectivity and conductance. The binding site of the NMDA receptor is of lower affinity. Therefore, the selectivity for Ca2+ is not as high, but the lower affinity of binding provides a faster off rate so that interacting sites are not required for high conductance.  相似文献   

4.
Ionic currents induced by 5-hydroxytryptamine (5-HT) in cultured neuroblastoma N18 cells were studied using whole-cell voltage clamp. The response was blocked by 1-10 nM 5-HT3 receptor-specific antagonists MDL 7222 or ICS 205-930, but not by 1 microM 5-HT1/5-HT2 receptor antagonist spiperone or 5-HT2 receptor-specific antagonist ketanserin. These 5-HT3 receptors seem to be ligand-gated channels because the response (a) did not require internal ATP or GTP, (b) persisted with long internal dialysis of CsF (90 mM), A1F4- (100 microM), or GTP gamma S (100 microM), and (c) with ionophoretic delivery of 5-HT developed with a delay of less than 10 ms and rose to a peak in 34-130 ms. Fluctuation analysis yielded an apparent single-channel conductance of 593 fS. The relative permeabilities of the channel for a variety of ions were determined from reversal potentials. The channel was only weakly selective among small cations, with permeability ratios PX/PNa of 1.22, 1.10, 1.01, 1.00, and 0.99 for Cs+, K+, Li+, Na+, and Rb+, and 1.12, 0.79, and 0.73 for Ca2+, Ba2+, and Mg2+ (when studied in mixtures of 20 mM divalent ions and 120 mM N-methyl-D-glucamine). Apparent permeability ratios for the divalent ions decreased as the concentration of divalent ions was increased. Small monovalent organic cations were highly permeant. Large organic cations such as Tris and glucosamine were measurably permeant with permeability ratios of 0.20 and 0.08, and N-methyl-D-glucamine was almost impermeant. Small anions, NO3-, Cl-, and F-, were slightly permeant with permeability ratios of 0.08, 0.04, and 0.03. The results indicate that the open 5-HT3 receptor channel has an effective minimum circular pore size of 7.6 A and that ionic interactions in the channel may involve negative charges near the pore mouth.  相似文献   

5.
The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ratios relative to Na+ ions were calculated from the Goldman-Hodgkin-Katz equation. 40 small monovalent organic cations had permeability ratios larger than 0.1. The most permeant including NH4+, hydroxylamine, hydrazine, methylamine, guanidine, and several relatives of guanidine had permeability ratios in the range 1.3--2.0. However, even cations such as imidazole, choline, tris(hydroxymethyl)aminomethane, triethylamine, and glycine methylester were appreciably permeant with permeability ratios of 0.13--0.95. Four compounds with two charged nitrogen groups were also permeant. Molecular models of the permeant ions suggest that the smallest cross-section of the open pore must be at least as large as a square, 6.5 A x 6.5 A. Specific chemical factors seem to be less important than access or friction in determining the ionic selectivity of the endplate channel.  相似文献   

6.
Based on the structure of the KcsA potassium channel, the Shaker K+ channel is thought to have, near the middle of the membrane, a cavity that can be occupied by a permeant or a blocking cation. We have studied the interaction between cations in the cavity and the activation gate of the channel, using a set of monovalent cations together with Shaker mutants that modify the structure of the cavity. Our results show that reducing the size of the side chain at position 470 makes it possible for the mutant channel, unlike native Shaker, to close with tetraethylammonium (TEA+) or the long-chain TEA-derivative C10+ trapped inside the channel. Neither I470 mutants nor Shaker can close when N-methyl-glucamine (NMG+) is in the channel, even though this ion is smaller than C10+. Apparently, the carbohydrate side chain of NMG+ prevents gate closing. Gating currents recorded from Shaker and I470C were measured in the presence of different intracellular cations to further analyze the interaction of cations with the gate. Our results suggest that the cavity in Shaker is so small that even permeant cations like Rb+ or Cs+ must leave the cavity before the channel gate can close.  相似文献   

7.
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 A), dimethylamine (DMA, 4.6 A) and triethylamine (TriEA, 6 A), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 A). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 A) and tetra-propylammonium (TPA, 9.8 A) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 A) and tetra-pentylammonium (TPeA, 13.2 A) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 microM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of approximately 7 A for PCL.  相似文献   

8.
External monovalent cations that impede the closing of K channels   总被引:17,自引:15,他引:2       下载免费PDF全文
We have examined the effects of a variety of monovalent cations on K channel gating in squid giant axons. The addition of the permeant cations K, Rb, or Cs to the external medium decreases the channel closing rate and causes a negative shift of the conductance-voltage relationship. Both of these effects are larger in Rb than in K. The opening kinetics of the K channel are, on the other hand, unaffected by these monovalent cations. Other permeant species, like NH4 and Tl, slightly increase the closing rate, whereas the relatively impermeant cations Na, Li, and Tris have little or no effect on K channel gating. The permeant cations have different effects on the reversal potential and the shape of the instantaneous current-voltage relationship. These effects give information about entry and binding of the cations in K channels. Rb, for example, enters the pore readily (large shift of the reversal potential), but binds tightly to the channel interior, inhibiting current flow. We find a correlation between the occupancy of the channel by a monovalent cation and the closing rate, and conclude that the presence of a monovalent cation in the pore inhibits channel closing, and thereby causes a leftward shift in the activation-voltage curve. In causing these effects, the cations appear to bind near the inner surface of the membrane.  相似文献   

9.
The selective permeability to monovalent metal cations, as well as the relationship between cation permeation and gating kinetics, was investigated for native tetrodotoxin-insensitive Na-channels in guinea pig ventricular myocytes using the whole-cell patch clamp technique. By the measurement of inward unidirectional currents and biionic reversal potentials, we demonstrate that the cardiac Na-channel is substantially permeable to all of the group Ia and IIIa cations tested, with the selectivity sequence Na(+) >/= Li(+) > Tl(+) > K(+) > Rb(+) > Cs(+). Current kinetics was little affected by the permeant cation species and concentrations tested (相似文献   

10.
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 Å), dimethylamine (DMA, 4.6 Å) and triethylamine (TriEA, 6 Å), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 Å). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 Å) and tetra-propylammonium (TPA, 9.8 Å) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 Å) and tetra-pentylammonium (TPeA, 13.2 Å) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 μM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of ∼7 Å for PCL.  相似文献   

11.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. Decreasing extracellular permeant ion concentration decreases outward Na+ current at positive voltages while increasing the driving force for the current. This anomalous effect of permeant ion concentration, especially obvious in a mutant (F1485Q) in which fast inactivation is partially abolished, is due to an alteration of open probability. The effect is only observed when a highly permeant cation (Na+, Li+, or hydrazinium) is substituted for a relatively impermeant cation (K+, Rb+, Cs+, N -methylglucamine, Tris, choline, or tetramethylammonium). With high concentrations of extracellular permeant cations, the peak open probability of Na+ channels increases with depolarization and then saturates at positive voltages. By contrast, with low concentrations of permeant ions, the open probability reaches a maximum at approximately 0 mV and then decreases with further depolarization. There is little effect of permeant ion concentration on activation kinetics at depolarized voltages. Furthermore, the lowered open probability caused by a brief depolarization to +60 mV recovers within 5 ms upon repolarization to −140 mV, indicative of a gating process with rapid kinetics. Tail currents at reduced temperatures reveal the rapid onset of this gating process during a large depolarization. A large depolarization may drive a permeant cation out of a site within the extracellular mouth of the pore, reducing the efficiency with which the channel opens.  相似文献   

12.
To investigate the structural basis of anion selectivity of Drosophila GABA-gated Cl(-) channels, the permeation properties of wild-type and mutant channels were studied in Xenopus oocytes. This work focused on asparagine 319, which by homology is one amino acid away from a putative extracellular ring of charge that regulates cation permeation in nicotinic receptors. Mutation of this residue to aspartate reduced channel conductance, and mutation to lysine or arginine increased channel conductance. These results are consistent with an electrostatic interaction between this site and permeating anions. The lysine mutant, but not the arginine mutant, formed a channel that is permeable to cations, and this cannot be explained in terms of electrostatics. The lysine mutant had a 25-mV reversal potential in solutions with symmetrical Cl(-) and asymmetrical cations. The permeability ratio of K(+) to Cl(-) was determined as 0. 33 from reversal potential measurements in KCl gradients. Experiments with large organic cations and anions showed that cation permeation can only be seen in the presence of Cl(-), but Cl(-) permeation can be seen in the absence of permeant cations. Measurements of permeability ratios of organic anions indicated that the lysine mutant has an increased pore size. The cation permeability of the lysine-containing mutant channel cannot be accounted for by a simple electrostatic interaction with permeating ions. It is likely that lysine substitution causes a structural change that extends beyond this one residue to influence the positions of other channel-forming residues. Thus protein conformation plays an important role in enabling ion channels to distinguish between anions and cations.  相似文献   

13.
We have studied the relation between permeation and recovery from N-type or ball-and-chain inactivation of ShakerB K channels. The channels were expressed in the insect cell line Sf9, by infection with a recombinant baculovirus, and studied under whole cell patch clamp. Recovery from inactivation occurs in two phases. The faster of the two lasts for approximately 200 ms and is followed by a slow phase that may require seconds for completion. The fast phase is enhanced by both permeant ions (K+, Rb+) and by the blocking ion Cs+, whereas the impermeant ions (Na+, Tris+, choline+) are ineffective. The relative potencies are K+ > Rb+ > Cs+ > NH4+ >> Na+ approximately choline+ approximately Tris+. Ion permeation through the channels is not essential for recovery. The results suggest that cations influence the fast phase of recovery by binding in a site with an electrical distance greater than 0.5. Recovery from fast inactivation is voltage-dependent. With Na+, choline+, or Tris+ outside, about 15% of the channels recover in the fast phase (-80 mV), and the other 85% apparently enter a second inactivated state from which recovery is very slow. Recovery in this phase is not influenced by external ions, but is speeded by hyperpolarization.  相似文献   

14.
The human heart Na channel (hH1) was expressed by transient transfection in tsA201 cells, and we examined the block of Na current by a series of symmetrical tetra-alkylammonium cations: tetramethylammonium (TMA), tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA). Internal TEA and TBA reduce single-channel current amplitudes while having little effect on single channel open times. The reduction in current amplitude is greater at more depolarized membrane potentials. Analysis of the voltage-dependence of single-channel current block indicates that TEA, TPrA and TBA traverse a fraction of 0.39, 0.52, and 0.46 of the membrane electric field to reach their binding sites. Rank potency determined from single-channel experiments indicates that block increases with the lengths of the alkyl side chains (TBA > TPrA > TEA > TMA). Internal TMA, TEA, TPrA, and TBA also reduce whole-cell Na currents in a voltage-dependent fashion with increasing block at more depolarized voltages, consistent with each compound binding to a site at a fractional distance of 0.43 within the membrane electric field. The correspondence between the voltage dependence of the block of single-channel and macroscopic currents indicates that the blockers do not distinguish open from closed channels. In support of this idea TPrA has no effect on deactivation kinetics, and therefore does not interfere with the closing of the activation gates. At concentrations that substantially reduce Na channel currents, TMA, TEA, and TPrA do not alter the rate of macroscopic current inactivation over a wide range of voltages (-50 to +80 mV). Our data suggest that TMA, TEA, and TPrA bind to a common site deep within the pore and block ion transport by a fast-block mechanism without affecting either activation or inactivation. By contrast, internal TBA and TPeA increase the apparent rate of inactivation of macroscopic currents, suggestive of a block with slower kinetics.  相似文献   

15.
The incorporation of porin protein F from the outer membrane of Pseudomonas aeruginosa into artificial lipid bilayers results in an increase of the membrane conductance by many orders of magnitude. The membrane conductance is caused by the formation of large ion-permeable channels with a single-channel conductance in the order of 5 nS for 1 M alkali chlorides. The conductance has an ohmic current vs. voltage relationship. Further information on the structure of the pore formed by protein F was obtained by determining the single-channel conductance for various species differing in charge and size, and from zero-current potential measurements. The channel was found to be permeable for large organic ions (Tris+, N(C2H5)4+, Hepes-) and a channel diameter of 2.2 nm could be estimated from the conductance data (pore length of 7.5 nm). At neutral pH the pore is about two times more permeable for cations than for anions, possibly caused by negative charges in the pore. The consistent observation of large water filled pores formed by porin protein F in model membrane systems is discussed in the light of the known low permeability of the Ps. aeruginosa outer membrane towards antibiotics. It is suggested that this results from a relatively low proportion of open functional porin protein F pores in vivo.  相似文献   

16.
Cyclic nucleotide-gated (CNG) channels play a critical role in olfactory and visual transduction. Site-directed mutagenesis and inside-out patch-clamp recordings were used to investigate ion permeation and selectivity in two mutant homomeric rat olfactory CNGA2 channels expressed in HEK293 cells. A single point mutation of the negatively charged pore loop (P-loop) glutamate (E342) to either a positively charged lysine or arginine resulted in functional channels, which consistently responded to cGMP, although the currents were generally extremely small. The concentration-response curve of the lysine mutant channel was very similar to that of wild-type (WT) channels, suggesting no major structural alteration to the mutant channels. Reversal potential measurements, during cytoplasmic NaCl dilutions, showed that the lysine and the arginine mutations switched the selectivity of the channel from cations (P(Cl)/P(Na) = 0.07 [WT]) to anions (P(Cl)/P(Na) = 14 [Lys] or 10 [Arg]). Relative anion permeability sequences for the two mutant channels, measured with bi-ionic substitutions, were NO(3)(-) > I(-) > Br(-) > Cl(-) > F(-) > acetate(-), the same as those obtained for anion-selective GABA and glycine channels. The mutant channels also seem to have an extremely small single-channel conductance, measured using noise analysis of about 1-2 pS, compared to a WT value of about 29 pS. The results showed that it is predominantly the charge of the E342 residue in the P-loop, rather than the pore helix dipoles, which controls the cation-anion selectivity of this channel. However, the outward rectification displayed by both mutant channels in symmetrical NaCl solutions suggests that the negative ends of the pore helix dipoles may play a role in reducing the outward movement of Cl(-) ions through these anion-selective channels. These results have potential implications for the determinants of anion-cation selectivity in the large family of P-loop-containing channels.  相似文献   

17.
Decreasing the external sodium concentration ([Na+]e) to 10 mM in the presence of 280 mM sucrose had no significant effect on phosphocreatine (PCr) or on intracellular pH (pHi) as assessed using 31P nuclear magnetic resonance spectroscopy. Zero [Na+]e in the presence of 300 mM sucrose caused a fall in PCr levels to 50% of control values, and the pHi fell to 6.85 from a control value of 7.30. 1H nuclear magnetic resonance spectroscopy confirmed that the sucrose had not entered the tissue. The decreases in PCr content and in pHi, known to occur on depolarization using 40 mM external potassium concentration ([K+]e), were further decreased in the presence of 10 mM [Na+]e), to 51.4 +/- 4.0 and 6.80 +/- 0.10% of control values, respectively. The free intracellular magnesium concentration was significantly increased from a control value of 0.37 +/- 0.10 mM to 0.66 +/- 0.13 mM (p less than 0.001), when [Na+]e was decreased to 10 mM, but was not further affected by high [K+]e or zero Na+. Membrane permeabilities of the sodium substitutes N-methyl-D-glucamine (NMG), tris(hydroxymethyl)aminomethane (Tris), tetramethylammonium (TMA), and choline were assessed using 1H nuclear magnetic resonance spectroscopy. In the presence of 10 mM [Na+]e, NMG, TMA, and choline (all at 140 mM) were taken up and remained within the tissue for at least 2 h, but no uptake of Tris (140 mM) or sucrose (above) could be detected. Tissue lactate levels (from the lactate/N-acetyl aspartate ratio) increased in the presence of the substitutes that were taken up, although no change in pH was detected.  相似文献   

18.
5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na+-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li+, Na+, ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li+, ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein.  相似文献   

19.
Organic cation transporters of the OCT family mediate downhill transport of organic cations, compatible with carrier, pore, or gate-lumen-gate mechanisms. We studied rat OCT2 expressed in Xenopus oocytes by the two-electrode voltage-clamp technique, including membrane capacitance (C(m)) monitoring. Choline, a transported cationic substrate, elicited the expected inward currents but also elicited decreases of C(m). Similar C(m) decreases were caused by the non-transported inhibitors tetrabutylammonium (a cation) and corticosterone (uncharged). Effects on C(m) were voltage-dependent, with a maximum at -140 mV. These findings suggest that the empty rOCT2 protein can undergo an electrogenic conformation change, with one conformation highly favored at physiological voltage. Moreover, alkali cations elicited considerable inward currents and inhibited uptake of [(14)C]tetraethylammonium with a sequence Cs(+) > Rb(+) > K(+) > Na(+) approximately Li(+). Cs(+) affected current and capacitance with similar affinity (K(0.5) approximately 50 mm). Tetraethylammonium inhibited Cs(+) currents in a concentration-dependent manner. Conversely, Cs(+) inhibited tetraethylammonium uptake by a competitive mechanism. Activation energy of the currents estimated from measurements between 12 degrees C and 32 degrees C was approximately 81 kJ/mol for Cs(+) and 39 kJ/mol for tetramethylammonium, compatible with permeation of Cs(+) through rOCT2 along the same path as organic substrates and by a mechanism different from simple electrodiffusion. Rationalization of Cs(+) selectivity in terms of a pore pointed to a pore diameter of approximately 4 A. Intriguingly, that value matches the known selectivity of rOCT2 for organic compounds. Our data show that selective permeability of rOCT2 is not determined by ligand affinity but might rather be understood in terms of the ion channel concept of a distinct "selectivity filter."  相似文献   

20.
Pore size is of considerable interest in voltage-gated Ca(2+) channels because they exemplify a fundamental ability of certain ion channels: to display large pore diameter, but also great selectivity for their ion of choice. We determined the pore size of several voltage-dependent Ca(2+) channels of known molecular composition with large organic cations as probes. T-type channels supported by the Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 subunits; L-type channels encoded by the Ca(V)1.2, beta(1), and alpha(2)delta(1) subunits; and R-type channels encoded by the Ca(V)2.3 and beta(3) subunits were each studied using a Xenopus oocyte expression system. The weak permeabilities to organic cations were resolved by looking at inward tails generated upon repolarization after a large depolarizing pulse. Large inward NH(4)(+) currents and sizable methylammonium and dimethylammonium currents were observed in all of the channels tested, whereas trimethylammonium permeated only through L- and R-type channels, and tetramethylammonium currents were observed only in L-type channels. Thus, our experiments revealed an unexpected heterogeneity in pore size among different Ca(2+) channels, with L-type channels having the largest pore (effective diameter = 6.2 A), T-type channels having the tiniest pore (effective diameter = 5.1 A), and R-type channels having a pore size intermediate between these extremes. These findings ran counter to first-order expectations for these channels based simply on their degree of selectivity among inorganic cations or on the bulkiness of their acidic side chains at the locus of selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号