首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latex paint is commonly used by professional and consumer painters. Potential inhalation exposure to chemical vapors from paint has been studied extensively. Potential dermal exposure is not as well studied and existing exposure evaluation methods assume the paint remains wet for the duration of skin contact. However, latex paint may dry quickly and this limits the bioavailability of paint constituents due to the decreased diffusion through a dry film. This study presents a tiered in silico (i.e., computer modeling) approach to evaluate potential dermal exposure to nonvolatile substances using a technique that begins with exposure to a wet paint film and transitions to a dry film. Experiments were performed to help quantify a key parameter, latex paint drying time, and the experimental results were used in a case study to demonstrate the tiered approach. The predicted dermal penetration ranged from 100% of the applied substance for a simple conservative approach to 5% of the applied substance for the refined wet/dry film approach. Assuming the paint film was partially wiped further reduced the predicted penetration to 2%. This study addresses only latex paint but the tiered approach could be modified to evaluate other products.  相似文献   

2.
The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after ∼15 to 30 minutes, indicating that the tablet surface was homogeneously covered with film coating. The surface roughness started to increase from the beginning of the coating process, and the increase in the roughness broke off after 30 minutes of spraying. The results clearly showed that the surface roughness of the tablets increased until the film coating covered the whole surface area of the tablets, corresponding to a coating time period of 15 to 30 minutes (from the beginning of the spraying phase). Thereafter, the film only became thicker. The methods used in this study were applicable in the visualization of the changes caused by the film coating on the tablet surfaces.  相似文献   

3.
Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract ( T. viride ) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomass pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H(2)O- or D(2)O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D(2)O and in H(2)O revealed that D/H exchange on the cellulose chains must be taken into account when a D(2)O-based reservoir is used. The results also show that cellulose films swell slightly more in D(2)O than in H(2)O. Regarding enzymatic digestion, at 20 °C in H(2)O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.  相似文献   

4.
The effect of zinc on leaf decomposition by aquatic fungi was studied in microcosms. Alder leaf disks were precolonized for 15 days at the source of the Este River and exposed to different zinc concentrations during 25 days. Leaf mass loss, fungal biomass (based on ergosterol concentration), fungal production (rates of [1-14C]acetate incorporation into ergosterol), sporulation rates, and species richness of aquatic hyphomycetes were determined. At the source of the Este River decomposition of alder leaves was fast and 50% of the initial mass was lost in 25 days. A total of 18 aquatic hyphomycete species were recorded during 42 days of leaf immersion. Articulospora tetracladia was the dominant species, followed by Lunulospora curvula and two unidentified species with sigmoid conidia. Cluster analysis suggested that zinc concentration and exposure time affected the structure of aquatic hyphomycete assemblages, even though richness had not been severely affected. Both zinc concentration and exposure time significantly affected leaf mass loss, fungal production and sporulation, but not fungal biomass. Zinc exposure reduced leaf mass loss, inhibited fungal production and affected fungal reproduction by either stimulating or inhibiting sporulation rates. The results of this work suggested zinc pollution might depress leaf decomposition in streams due to changes in the structure and activity of aquatic fungi.  相似文献   

5.
The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra-terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE-R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography–mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.  相似文献   

6.
The dynamics of the biodegradation of wood by brown-rot fungi (Coniophora puteana, Poria placenta, and Gloephyllum trabeum) was investigated by the water vapour sorption method. The change in wood microstructure characteristics (specific surface and concentration of surface hydrophilic centres) with increasing exposure time correlated with reduction in mass and change in composition. Two-to-eight-nanometer-wide micropores, whose size and volume depended on the fungal species and exposure time, appeared in the wood. Methodological aspects of the application of sorption methods should be taken into account in the interpretation of the results.  相似文献   

7.
Physical properties (roughness, gloss, mechanical, surface topography and adhesive) of a bioadhesive film for the transdermal delivery of drugs and its interactions with a skin model surface were studied. Roughness is a measurement of the small-scale variations in the height of a physical surface. No significant differences in Ra between the “x” and “y” dimensions for both the skin model and patch were detected, due to uniformity in their production. Scanning electron microscope pictures showed small particles projected from the film. Those particles resulted in increasing roughness and surface area. For the patch, gloss values measured at 20° were 6.0 ± 0.9 and at 60°, 32.2 ± 2.2 gloss units, respectively, indicating a semi-gloss material. Concerning the mechanical properties, the tensile strength of the film resulted four- to sevenfold greater than the peel force from the model skin used, indicating the suitability of the film for skin application. The adhesion to skin model depended on the amount of water used for film application and on the elapsed time between film application and removal. Finally, the model skin that was invented by Charkoudian can be used as an alternative to costly and highly variable human skin substrates since it possesses human topography.  相似文献   

8.
A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness.Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length.This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maximum roughness they can tolerate is small.Orbital stability method was used to quantify the walking stability before the walker started to fall over.It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form.Although the passive walker remained orbitally stable for all the simulation cases,the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations.The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over.The results show that the number of steps before falling decreases exponentially with the increase in surface roughness.When the roughness magnitude approached to 0.73% of the walker's leg length,it fell down to the ground as soon as it entered into the uneven terrain.It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability.This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits,which have narrow basins of attraction.These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.  相似文献   

9.
The degradation of toluene and m‐cresol in a biofilm trickle‐bed reactor was experimentally and theoretically investigated. Degradation is the result of the cooperation between suspended and immobilized microorganisms in the trickling film and the biofilm. The role of the trickling film is that of a barrier for mass transfer to the biofilm or that of an additional reaction space. This is the result of physical availability of pollutants to the liquid phase as well as co‐substrate degradation of inherent biomass. An instationary reactor balance model is presented. In addition to this the change in wetting behavior of carrier surface due to biofilm formation is discussed. A partial wetting of biofilm surface by rivulets of the trickling film is proposed. The model was verified by experimental data. The different reactor operation modes denoted as biofilm regime versus trickling film regime for the chosen pollutant system were expressed in terms of dimensionless reactions and transfer numbers. It is shown that the volumetric reaction rates for toluene in a trickling film regime reaches values twice as high as that of a biofilm regime due to the presence of the second substrate m‐cresol. The limiting step in both cases is the mass transfer of oxygen to bacteria in the biofilm or trickling film.  相似文献   

10.
Fungal biodeterioration of ivory was investigated with in vitro inoculation of samples obtained from boar and walrus tusks with the fungi Aspergillus niger and Serpula himantioides, species of known geoactive abilities. A combination of light and scanning electron microscopy together with associated analytical techniques was used to characterize fungal interactions with the ivory, including changes in ivory composition, dissolution and tunnelling, and the formation of new biominerals. The research was aimed at providing further understanding of the potential roles of fungi in the colonization and deterioration of ivory in terrestrial environments, but also contributes to our knowledge regarding the possible origins of the surface damage observed on early medieval sculptures made largely from walrus tusks, referred to as ‘the Lewis hoard of gaming pieces’, that were presumably produced for playing chess. The experiments have shown that the possibility of damage to ivory being caused by fungi is realistic. Scanning electron microscopy revealed penetration of fungal hyphae within cracks in the walrus tusk that showed also widespread tunnelling by fungal hyphae as well as ‘fungal footprints’ where the surface was etched as a consequence of mycelial colonization. Similar phenomena were observed with boar tusk ivory, while production of metabolites could lead to complete dissolution of the sample. Colonization of ivory and/or exposure to fungal activity lead to extensive secondary biomineral formation, and this was identified as calcium oxalate, mainly as the monohydrate, whewellite.  相似文献   

11.
doi: 10.1111/j.1741‐2358.2010.00422.x
Weight loss and changes in surface roughness of denture base and reline materials after simulated toothbrushing in vitro Objective: To evaluate the weight loss and the surface roughness of acrylic resins after simulated brushing tests. Material and methods: Ten specimens of each material (Tokuyama Rebase II‐TR, New Truliner‐NT, Ufi Gel Hard‐UH and Lucitone 550‐L) were made. The wear loss (mg) by weight and the surface roughness (Ra μm) of each specimen was determined before and after brushing. The specimens were placed on the brushing machine and a total of 20 000 brushing cycles was performed. The results of weight loss and roughness values were submitted to the anova followed by the Tukey’s test (p = 0.05). Results: The mean weight loss of material L was statistically higher (p < 0.001) than that of the relines TR, UH and NT. No significant differences were found among the roughness values of resins TR, UH and L (p > 0.05). Only for L, toothbrushing increased the surface roughness. After toothbrushing, there was no significant difference between the roughness values of materials L and NT. The highest mean weight loss during the simulated toothbrushing tests was observed for L. Before the toothbrushing tests, the NT exhibited the highest mean roughness. Conclusion: Brushing resulted in increase in roughness only for resin L.  相似文献   

12.
SUMMARY: On exposing a strain of Bacterium coli 28.D.10 in a surface film at atmospheric temperature to atmospheres of different moisture contents, it was found that for relative humidities between 100 and 66% the numbers of survivors decreased with decreasing humidity. There was also some evidence of a slight increase in survivors for a decrease in relative humidity from 43 to 0%.
The percentage of survivors of Bact. coli after exposure to quaternary ammonium disinfectants also decreased with relative humidity between 100 and 66% but no significant differences were found for changes in relative humidity below 66%. The numbers of survivors of a culture of Staphylococcus aureus were the same after storage at a relative humidity of 43% as at 100%; drying did not appear to affect the sensitivity of Staph. aureus to quaternary ammonium compounds. Tests of the effect of storage time in a saturated atmosphere gave results which were not entirely consistent, but where differences were observed, there was a lower percentage of survivors for freshly inoculated films than for films which had been stored for 3 hr, presumably because a fresh film was more easily removed to the disinfectant.
When either Bact. coli or Staph. aureus was exposed to a disinfectant, the percentage of survivors was higher when the organisms were in a surface film than when they were inoculated directly into the disinfectant. Agitation during exposure reduced the numbers of survivors from a surface film. Neither the glass nor the metal coming in contact with the disinfectants affected the level of survivors.
Under the conditions of testing, sodium hypochlorite was a more effective disinfectant than the quaternary ammonium compounds used.  相似文献   

13.
A three-stage chemostat containing a mixed consortium of microorganisms, includingLegionella pneumophila, was used to determine the suitability of a silver-containing paint to control biofouling in water systems. The paint was efficient in controlling total surface colonisation by heterotrophic microorganisms and growth of the pathogen over a 2-week period. Biodiversity was limited in the presence of the silver paint and this was thought to help controlL. pneumophila numbers. Glass control tiles suspended alongside the silver painted tiles also had reduced colonisation for the 2-week period, suggesting that low levels of silver leached from the paint surface. This loss of silver was confirmed since the inhibition of biofouling and inclusion of the pathogen was not maintained after the 2-week period. Although this paint was unsuitable for controlling biofouling over extended time periods, the data suggest that a reformulated paint or electrochemical method of introducing silver ions may be successful.  相似文献   

14.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

15.
Atomic force microscopy (AFM) has been used to image the surface of thin sections of fungal infected plant tissue, with or without post-embedding immunocytochemical labeling with gold conjugates. Plant and fungal cells are easily identified from their size, shape and roughness. The cellular shape is similar to that observed by light or electron microscopy (LM or EM) and some internal organelles can even be individualized. The gold beads are easily observed and counted. Their dimensions varied according to the roughness of the surface, but fit with the expected sizes.  相似文献   

16.
Multilayer films were prepared through a self-assembly technique of proteases. Solutions of pepsin, lysozyme and trypsin at 10−5 M (pH 6.4, pH 6.4, and pH 7.6, respectively) were used as precursors for film building. The wettability of the film surfaces were estimated by contact angle measurements indicating a higher hydrophobicity to trypsin. This was in agreement to the calculated surface tension components. The patterns of the films were examined using atomic force microscopic images. Surfaces before and after bacteria (Escherichia coli) interactions were also characterized. The results indicate that the hydrophobicity plays a key role in bacterial adhesion and that roughness can be considered as a secondary factor.  相似文献   

17.
Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6?±?3.28, 54.4?±?4.26, 56.1?±?7.48 and 46.0?±?2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16?±?4.22, 24.81?±?5.35, 8.17?±?1.81 and 8.92?±?3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.  相似文献   

18.
Long-term field investigations on fungal deterioration covering about 250 multi-componental materials of different chemical composition were carried out at the biological station at Juodkrante (Neringa, Lithuania) on the Curonian Spit. The materials were exposed under three conditions with or without the limitation of natural climatic factors. It was found that deterioration of polymeric materials depended greatly on their composition and surface properties, as well as on the exposure conditions and their duration. The most resistant materials to fungal growth were homogeneous films, and among the more susceptible substrates were materials containing additives. Materials which were exposed to the open air were damaged more than those kept in a cellar and in specially constructed shelters. The most frequently isolated micromycetes from the surfaces of deteriorated materials surface were Aureobasidium pullulans, Aspergillus niger, A. versicolor, Cladosporium cladosporioides, Paecilomyces sulphurellus, Trichoderma viride, Ulocladium atrum and some Penicillium spp.  相似文献   

19.
Dengue fever vectored by the mosquito Aedes aegypti is one of the most rapidly spreading insect-borne diseases, stimulating the search for alternatives to current control methods. Screening assays using a range of Metarhizium anisopliae and Beauveria bassiana isolates were performed against adult female Ae. aegypti. Four virulent isolates were selected for detailed study. Adult female mosquitoes were exposed to supports previously inoculated with fungal suspensions. Fungal isolates were suspended in Tween 80+8% vegetable oil. The isolates caused between 70 and 89% mortality as a result of fungal infection over the 7-day test period. Mean survival times varied between 3 and 5 days for treated insects, whilst control survival exceeded 40 days. The most promising isolate, M. anisopliae LPP133, based not only on virulence but facility for mass production, was used for lethal exposure time determinations. An exposure time of only 3.5 h was necessary to cause 50% mortality. Large cage trails were also carried out and mean survival time of insects exposed to fungus impregnated black cloths was significantly reduced. These results show that entomopathogenic fungi could be promising biological control agents for use against adult Ae. aegypti, by inoculating fungi onto surfaces on which the mosquitoes tend to rest. The subsequent mortality caused by the fungi could potentially reduce the populations of this insect thus reducing the incidence of Dengue.  相似文献   

20.
Tierra del Fuego, Argentina (55°S), receives increased solar ultraviolet‐B radiation (UV‐B) as a result of Antarctic stratospheric ozone depletion. We conducted a field study to examine direct and indirect effects of solar UV‐B radiation on decomposition of Gunnera magellanica, a native perennial herb, and on the native community of decomposer organisms. In general, indirect effects of UV‐B mostly occur due to changes in the chemical composition of litter, whereas direct effects during decomposition result from changes in decomposer organisms and/or differences in the photochemical breakdown of litter. We designed a full‐factorial experiment using senescent leaves that had received either near‐ambient or attenuated UV‐B during growth. The leaves were distributed in litterbags and allowed to decompose under near‐ambient or reduced solar UV‐B during the growing season. We evaluated initial litter quality, mass loss, and nutrient release of decomposing litter, and microbial colonization of both initial litter and decomposed litter. We found that litter that decomposed under near‐ambient UV‐B had significantly less mass loss than litter that decomposed under reduced UV‐B. The UV‐B conditions received by plants during growth, which did not affect mass loss and nutrient composition of litter, affected fungal species composition but in different ways throughout the decomposition period. Before the decomposition trial, Beauveria bassiana and Penicillium frequentans were higher under reduced UV‐B, whereas Cladosporium herbarum and pigmented bacteria were more common under the near‐ambient compared to the reduced UV‐B treatment. After the decomposition period, leaves that had grown under reduced UV‐B showed higher frequency of Penicillium thomii and lower frequency of Trichoderma polysporum than leaves that had grown under near‐ambient conditions. The UV‐B condition received during decomposition also affected fungal colonization, with Penicillium chrysogenum being more frequent in leaves that had decomposed under reduced UV‐B, while the other species were not affected. Our results demonstrate that, in this ecosystem, the effects of UV‐B radiation on decomposition apparently occurred mostly through changes in the fungal community, while changes in photochemical breakdown appeared to be less important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号