首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi.  相似文献   

2.
Hybridization and polyploidy are two major sources of genetic variability that can lead to adaptation in new habitats. Most species of the brown algal genus Fucus are found along wave-swept rocky shores of the Northern Hemisphere, but some species have adapted to brackish and salt marsh habitats. Using five microsatellite loci and mtDNA RFLP, we characterize two populations of morphologically similar, muscoides-like Fucus inhabiting salt marshes in Iceland and Ireland. The Icelandic genotypes were consistent with Fucus vesiculosus x Fucus spiralis F1 hybrids with asymmetrical hybridization, whereas the Irish ones consisted primarily of polyploid F. vesiculosus.  相似文献   

3.
We examined 733 individuals of Fucusspiralis from 21 locations and 1093 Fucusvesiculosus individuals from 37 locations throughout their northern hemisphere ranges using nuclear and mitochondrial markers. Three genetic entities of F. spiralis were recovered. In northern and sympatric populations, the presence of "F. spiralis Low" in the mid-intertidal and "F. spiralis High" in the high-intertidal was confirmed and both co-occurred with the sister species F. vesiculosus. The third and newly-discovered entity, "F. spiralis South", was present mainly in the southern range, where it did not co-occur with F. vesiculosus. The South entity diverged early in allopatry, then hybridized with F. vesiculosus in sympatry to produce F. spiralis Low. Ongoing parallel evolution of F. spiralis Low and F. spiralis High is most likely due to habitat preference/local selection and maintained by preferentially selfing reproductive strategies. Contemporary populations of F. spiralis throughout the North Atlantic stem from a glacial refugium around Brittany involving F. spiralis High; F. spiralis South was probably unaffected by glacial episodes. Exponential population expansion for F. vesiculosus began during the Cromer and/Holstein interglacial period (300,000-200,000 yrs BP). Following the last glacial maximum (30,000-22,000 yrs BP), a single mtDNA haplotype from a glacial refugium in SW Ireland colonized Scandinavia, the Central Atlantic islands, and the W Atlantic.  相似文献   

4.
In Heliconius butterflies, it has been proposed that speciation occurs through a combination of divergence in ecological habitat preferences and mimetic colour patterns. Here we test this hypothesis by investigating a parapatric form of the widespread species Heliconius erato. Mendelian (colour patterns) and molecular genetic data permit us to address hypotheses about introgression and genetic differentiation between different populations. Combined analysis of colour pattern, microsatellite loci and mitochondrial DNA showed that Heliconius erato venus and Heliconius erato chestertonii form a bimodal hybrid zone implying partial reproductive isolation. In a sample of 121 individuals collected in sympatry, 25% were hybrids representing a significant deficit of heterozygotes compared to the Hardy-Weinberg expectation. Seven microsatellite loci, analysed for a subset of these individuals, showed marked differentiation between the parental taxa, and unambiguously identified two genotypic clusters concordant with our phenotypic classification of individuals. Mitochondrial DNA analysis showed H. erato venus as a monophyletic group well differentiated from H. erato chestertonii, implying a lack of historical introgression between the populations. Heliconius erato chestertonii is therefore an incipient species that maintains its integrity despite high levels of hybridization. Moreover, H. erato chestertonii is found at higher altitudes than other races of H. erato and has a distinct colour pattern and mimetic relationship. Hence, there are now two examples of parapatric incipient species related to H. erato, H. himera and H. erato chestertonii, both of which are associated with higher altitudes, more arid habitats and distinct mimetic relationships. This implies that parapatric habitat adaptation is a likely cause of speciation in this group.  相似文献   

5.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

6.
EVOLUTION OF THE FUCACEAE (PHAEOPHYCEAE) INFERRED FROM nrDNA-ITS   总被引:2,自引:0,他引:2  
Sequences of the internal transcribed spacer region (ITS-1, 5.8S, and ITS-2) of nuclear ribosomal DNA were obtained from 16 species representing all six genera of Fucaceae ( Ascophyllum, Fucus, Hesperophycus, Pelvetia, Pelvetiopsis, and Xiphophora ) plus one outgroup ( Hormosira ). Parsimony analysis indicated that the family Fucaceae is monophyletic and that the northern hemisphere taxa are highly divergent from the only southern hemisphere genus, Xiphophora. The genus Pelvetia is not monophyletic because the European P. canaliculata is more closely related to Fucus, Hesperophycus, and Pelvetiopsis than to other Pelvetia species. We establish Silvetia, gen. nov. and transfer the 3 Pacific species of Pelvetia to the new genus. Fucus is monophyletic and not ancestral in the Fucaceae. The ITS sequences identified two strongly supported lineages within Fucus, one with F. serratus sister to the clade containing F. gardneri, F. distichus, and F. evanescens and a second including F. vesiculosus, F. spiralis, F. ceranoides, and F. virsoides. The ITS was not useful for resolving relationships within each of these clusters and between populations of F. vesiculosus. Within-individual variation in ITS sequences is high in Fucus, a derived genus, compared to Ascophyllum, a more ancestral genus. Mapping of the two characters that form the basis of Powell's model for speciation in the Fucaceae showed that 1) number of eggs per oogonium has not followed a gradual reduction and that 2) monoecy/dioecy has changed several times during evolution of this family.  相似文献   

7.
The wildcat (Felis silvestris ssp.) is a conservation concern largely due to introgressive hybridization with its congener F. s. catus, the common domestic cat. Because of a recent divergence and entirely overlapping ranges, hybridization is common and pervasive between these taxa threatening the genetic integrity of remaining wildcat populations. Identifying pure wildcats for inclusion in conservation programs using current morphological discriminants is difficult because of gross similarity between them and the domestic, critically hampering conservation efforts. Here, we present a vetted panel of microsatellite loci and mitochondrial polymorphisms informative for each of the 5 naturally evolved wildcat subspecies and the derived domestic cat. We also present reference genotypes for each assignment class. Together, these marker sets and corresponding reference genotypes allow for the development of a genetic rational for defining "units of conservation" within a phylogenetically based taxonomy of the entire F. silvestris species complex. We anticipate this marker panel will allow conservators to assess genetic integrity and quantify admixture in managed wildcat populations and to be a starting point for more in-depth analysis of hybridization.  相似文献   

8.
We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus was highly differentiated by host species, exhibiting high values of F(ST) and R(ST), and revealed clear and distinct host races. In sympatric and parapatric populations we found significant population differentiation as well, except for one sympatric population in which the two host species grew truly intermingled. The mean number of alleles per locus for isolates from each of the host species was significantly higher in sympatric/parapatric than in allopatric populations. This suggests that either gene flow between host races in sympatry, or in case of less neutral loci, selection in a more heterogeneous host environment can increase the level of genetic variation in each of the demes. The observed pattern of host-related genetic differentiation among these geographically spread populations suggest a long-term divergence between these host races. In sympatric host populations, both host races presumably come in secondary contact, and host-specific alleles are exchanged depending on the amount of fungal gene flow.  相似文献   

9.
The actinorhizal genusAlnus contains numerous taxa that have been morphologically classified into different subgenera, species and subspecies. The genetic divergence has been evaluated within subg.Alnobetula between the parapatric taxaAlnus sinuata andA. crispa, using diversity of allozyme markers at 15 structural loci among 20 populations. Evidence for introgressive hybridization at the overlap of their ranges was noted in three populations. However, the width of the hybrid zone appeared tenuous. The average genetic distance derived from the comparisons of conspecific populations was much smaller than the interspecific distance (D = 0.047). This allelic divergence was also paralleled with larger amounts of allelic and genotypic diversity within and among populations ofA. sinuata, which are occupying a more heterogenous ecological niche. It is proposed that the repeated advances and retreats of the ice sheet during the Pleistocene may have promoted the divergence and allopatric evolution of these subspecies, and that secondary contact may have occurred repeatedly during the interglacial periods. The dynamic-equilibrium model would predict in such cases that narrow hybrid zones, formed at the contact of parapatric ranges, would impede gene exchange between parental taxa by selection against hybrids. The results obtained in this study seemed concordant with this hypothesis, as they were also in agreement with the existent taxonomical treatment of these taxa based on morphology.  相似文献   

10.
Contact zones between species provide a unique opportunity to test whether taxa can hybridize or not. Cross‐breeding or hybridization between closely related taxa can promote gene flow (introgression) between species, adaptation, or even speciation. Though hybridization events may be short‐lived and difficult to detect in the field, genetic data can provide information about the level of introgression between closely related taxa. Hybridization can promote introgression between species, which may be an important evolutionary mechanism for either homogenization (reversing initial divergence between species) or reproductive isolation (potentially leading to speciation). Here, we used thousands of genetic markers from nuclear DNA to detect hybridization between two parapatric frog species (Rana boylii and Rana sierrae) in the Sierra Nevada of California. Based on principal components analysis, admixture, and analysis of heterozygosity at species diagnostic SNPs, we detected two F1 hybrid individuals in the Feather River basin, as well as a weak signal of introgression and gene flow between the frog species compared with frog populations from two other adjacent watersheds. This study provides the first documentation of hybridization and introgression between these two species, which are of conservation concern.  相似文献   

11.
The origins of hybrid zones between parapatric taxa have been of particular interest for understanding the evolution of reproductive isolation and the geographic context of species divergence. One challenge has been to distinguish between allopatric divergence (followed by secondary contact) versus primary intergradation (parapatric speciation) as alternative divergence histories. Here, we use complementary phylogeographic and population genetic analyses to investigate the recent divergence of two subspecies of Clarkia xantiana and the formation of a hybrid zone within the narrow region of sympatry. We tested alternative phylogeographic models of divergence using approximate Bayesian computation (ABC) and found strong support for a secondary contact model and little support for a model allowing for gene flow throughout the divergence process (i.e. primary intergradation). Two independent methods for inferring the ancestral geography of each subspecies, one based on probabilistic character state reconstructions and the other on palaeo-distribution modelling, also support a model of divergence in allopatry and range expansion leading to secondary contact. The membership of individuals to genetic clusters suggests geographic substructure within each taxon where allopatric and sympatric samples are primarily found in separate clusters. We also observed coincidence and concordance of genetic clines across three types of molecular markers, which suggests that there is a strong barrier to gene flow. Taken together, our results provide evidence for allopatric divergence followed by range expansion leading to secondary contact. The location of refugial populations and the directionality of range expansion are consistent with expectations based on climate change since the last glacial maximum. Our approach also illustrates the utility of combining phylogeographic hypothesis testing with species distribution modelling and fine-scale population genetic analyses for inferring the geography of the divergence process.  相似文献   

12.
We identify two processes by which humans increase genetic exchange among groups of individuals: by affecting the distribution of groups and dispersal patterns across a landscape, and by affecting interbreeding among sympatric or parapatric groups. Each of these processes might then have two different effects on biodiversity: changes in the number of taxa through merging or splitting of groups, and the extinction/extirpation of taxa through effects on fitness. We review the various ways in which humans are affecting genetic exchange, and highlight the difficulties in predicting the impacts on biodiversity. Gene flow and hybridization are crucially important evolutionary forces influencing biodiversity. Humans alter natural patterns of genetic exchange in myriad ways, and these anthropogenic effects are likely to influence the genetic integrity of populations and species. We argue that taking a gene-centric view towards conservation will help resolve issues pertaining to conservation and management. Editor's suggested further reading in BioEssays A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture Abstract.  相似文献   

13.
Hybridization is observed frequently in birds, but often it is not known whether the hybrids are fertile and if backcrossing occurs. The breeding ranges of the great reed warbler (Acrocephalus arundinaceus) and the clamorous reed warbler (A. stentoreus) overlap in southern Kazakhstan and a previous study has documented hybridization in a sympatric population. In the present study, we first present a large set of novel microsatellite loci isolated and characterised in great reed warblers. Secondly, we evaluate whether hybridization in the sympatric breeding population has been followed by backcrossing and introgression.We isolated 181 unique microsatellite loci in great reed warblers. Of 41 loci evaluated, 40 amplified and 30 were polymorphic. Bayesian clustering analyses based on genotype data from 23 autosomal loci recognised two well-defined genetic clusters corresponding to the two species. Individuals clustered to a very high extent to either of these clusters (admixture proportions ≥ 0.984) with the exception of four previously suggested arundinaceus-stentoreus hybrid birds that showed mixed ancestry (admixture proportions 0.495-0.619). Analyses of simulated hybrids and backcrossed individuals showed that the sampled birds do not correspond to first-fourth-generation backcrosses, and that fifth or higher generation backcrosses to a high extent resemble 'pure' birds at this set of markers.We conclude that these novel microsatellite loci provide a useful molecular resource for Acrocephalus warblers. The time to reach reproductive isolation is believed to be very long in birds, approximately 5 Myrs, and with an estimated divergence time of 2 Myrs between these warblers, some backcrossing and introgression could have been expected. However, there was no evidence for backcrossing and introgression suggesting that hybrids are either infertile or their progeny inviable. Very low levels of introgression cannot be excluded, which still may be an important factor as a source of new genetic variation.  相似文献   

14.
We performed a combined analysis of mitochondrial DNA (mtDNA) and microsatellite loci among lake whitefish (Coregonus clupeaformis) populations in order to assess the levels of congruence between both types of markers in defining patterns of genetic structuring, introgressive hybridization and inferring population origins in the hybrid zone of the St. John River basin. A second objective was to test the hypothesis that secondary contact between glacial lineages always resulted in the occurrence of sympatric dwarf and normal whitefish ecotypes. Fish were sampled from 35 populations and polymorphism was screened at mtDNA and six microsatellite loci for a total of 688 and 763 whitefish, respectively. Four lakes harbouring a single whitefish population of normal ecotype admixed with mtDNA haplotypes of different lineages were found. This confirmed that secondary contact between whitefish evolutionary lineages did not always result in the persistence of reproductively isolated ecotypes. Microsatellites further supported the definition of distinct glacial lineages by identifying lineage-specific allelic size groups. They also further supported the hypothesis that ecotypes originated from either a single founding lineage (sympatric divergence) or following secondary contacts between lineages (allopatric divergence), depending on the lake. In general, however, the pattern of population differentiation and introgressive hybridization observed at microsatellites was in sharp contrast with that depicted by mtDNA variation. Both factorial correspondence analysis and analysis of admixture proportion revealed a much more pronounced pattern of introgressive hybridization than depicted by mtDNA analyses. Variable levels of introgression indicated that environmental differences may be as important as the historical contingency of secondary contact in explaining the persistence of sympatric ecotypes and the differential pattern of introgressive hybridization among lakes. Whitefish populations from the St. John River basin hybrid zone represent a rare illustration of a continuum of both morphological and genetic differentiation within a given taxon, spanning from complete introgression to possibly complete reproductive isolation, depending on lakes. Thus, each lake may be viewed as a different temporal snapshot taken throughout the gradual process of speciation.  相似文献   

15.
Hailer F  Leonard JA 《PloS one》2008,3(10):e3333

Background

Population densities of many species throughout the world are changing due to direct persecution as well as anthropogenic habitat modification. These changes may induce or increase the frequency of hybridization among taxa. If extensive, hybridization can threaten the genetic integrity or survival of endangered species. Three native species of the genus Canis, coyote (C. latrans), Mexican wolf (C. lupus baileyi) and red wolf (C. rufus), were historically sympatric in Texas, United States. Human impacts caused the latter two to go extinct in the wild, although they survived in captive breeding programs. Morphological data demonstrate historic reproductive isolation between all three taxa. While the red wolf population was impacted by introgressive hybridization with coyotes as it went extinct in the wild, the impact of hybridization on the Texas populations of the other species is not clear.

Methodology/ Principal Findings

We surveyed variation at maternally and paternally inherited genetic markers (mitochondrial control region sequence and Y chromosome microsatellites) in coyotes from Texas, Mexican wolves and red wolves from the captive breeding programs, and a reference population of coyotes from outside the historic red wolf range. Levels of variation and phylogenetic analyses suggest that hybridization has occasionally taken place between all three species, but that the impact on the coyote population is very small.

Conclusion/Significance

Our results demonstrate that the factors driving introgressive hybridization in sympatric Texan Canis are multiple and complex. Hybridization is not solely determined by body size or sex, and density-dependent effects do not fully explain the observed pattern either. No evidence of hybridization was identified in the Mexican wolf captive breeding program, but introgression appears to have had a greater impact on the captive red wolves.  相似文献   

16.
The evolutionary importance of introgressive hybridization has long been recognized by plant evolutionists, and there is now a growing recognition for its potential role in animals as well. Detailed empirical investigations of this evolutionary process, however, are still lacking in many animal groups, particularly in the marine environment. Using integrated microsatellite DNA data (eight loci analysed over 803 individuals representing 17 sampling locations) and multivariate statistical procedures (principal component, factorial correspondence and admixture proportion analyses), we: (i) provide a detailed dissection of the dynamics of introgressive hybridization between Sebastes fasciatus and S. mentella, two economically important redfishes from the North-west Atlantic; and (ii) infer the factors potentially involved in the maintenance of the hybrid zone observed in the gulf of St. Lawrence and south of Newfoundland. This study provided one of the rare examples of extensive introgressive hybridization in the ocean, and highlighted the predominant role of this process in shaping the extent of genetic diversity, interspecific differences and population structuring among redfishes from the North-west Atlantic. The extensive (average rate of introgression = 15%) but geographically circumscribed and asymmetrical pattern of introgressive hybridization, the sympatric persistence of two reproductively isolated introgressed groups, the differential patterns of linkage disequilibrium among samples, and the maintenance of genetic integrity of both species outside the defined zone of introgression despite high potential for gene flow, all implicated selection in promoting and maintaining the observed pattern of introgression.  相似文献   

17.
Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced‐representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans.  相似文献   

18.
Cleavage of DNA by brown algal polyphenols   总被引:2,自引:0,他引:2  
Extracts of marine algae have been tested to determine their ability to cleave DNA. The species producing positive results wereAscophyllum nodosum, Fucus serratus, F. spiralis, F. vesiculosus, Halidrys siliquosa andHimanthalia elongata. Partial purification of each extract by dialysis against water revealed that the active compounds in each species were high molecular weight polyphenols.  相似文献   

19.
20.
Biochemical methods can detect variation at individual genetic loci, making possible the direct assessment of natural hybridization and introgression between fish populations. Protein electro-phoresis has been used to confirm and extend knowledge of many situations where species hybrids have been detected by morphological analyses. New cases of natural hybridization, including some at the subspecies level, have also been identified. Biochemical studies have provided the first conclusive evidence of natural post F1 hybrids and of introgression between fish taxa. The strongest cases for introgression have used a combined analysis of nuclear protein genes and taxaspecific maternally inherited mitochondrial DNA variation. Information on the significance of introgression as a source of gene flow between taxa, particularly below the species level where sympatric subspecies and sibling species are involved, should expand in the future as the numbers and types of nuclear and mitochondrial DNA loci which can be assayed for variation increase. The full importance of introgressive hybridization in speciation may then be understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号