首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The condensation and overall elongation products of exogenous arachidoyl-CoA (20:0-CoA) and endogenous fatty acids in swine cerebral microsomes were detected by radio gas chromatography. In addition, the condensation products with malonyl-CoA as substrate were analyzed by radio high-performance liquid chromatography. Three main condensation products were detected; the overall elongation products of exogenous 20:0-CoA were 22:0 and 24:0, and those of endogenous substrates were 18:0, 22:4, and 24:4. The yield was estimated for the conversion of 3-ketoacyl-CoAs to the corresponding saponification products (methyl ketones or R-2-one; e.g., 2-heptadecanone = 17:0-2-one); these products were identified in the preceding paper (S. Yoshida and M. Takeshita (1987) Arch. Biochem. Biophys. 254, 170-179). The extraction of R-2-one by hexane depended on the acyl chain length. The yield of 2-heneicosanone (21:0-2-one) detected by radio gas chromatography was 80% whereas the yields of 17:0-2-one and 2-heneicosatetraenone (21:4-2-one) from the corresponding 3-ketoacyl-CoAs were 56 and 48%, respectively. A quantitative comparison was performed for the condensation and overall elongation activity; it was noticed that the condensation activity for the system which simultaneously produced two elongation products was nearly the same as that of the corresponding overall elongation activity. This result suggests that the condensation step may be at least one of the rate-limiting steps in the overall elongation of very-long-chain fatty acyl-CoA.  相似文献   

2.
The condensation products in the elongation of exogenous arachidoyl-CoA (20:0-CoA) and endogenous fatty acids in adult swine cerebral microsomes were isolated and purified by using HPLC and a radioanalyzer. A saponification product of the condensation reaction of 20:0-CoA with malonyl-CoA was identified by gas chromatography-mass spectrometry as 2-heneicosanone (21:0-2-one). The endogenous substrates (16:0-CoA and 20:4-CoA) were likewise identified as 2-heptadecanone (17:0-2-one) and 2-heneicosatetraenone (21:4-2-one). Quantitative analysis of condensation activity was performed using electron-impact mass fragmentography. A characteristic fragment ion (m/z 59) of 21:0-2-one was used to estimate the condensation activity for 20:0-CoA, and fragment ions at m/z 58 and 80 were monitored for the endogenous substrates (16:0-CoA and 20:4-CoA, respectively). The molecular ion for each product was detected using chemical ionization. A comparative study of the condensation of 20:0-CoA and endogenous substrates was carried out for microsomes obtained from white matter, gray matter, and isolated neuronal cells; the activity for 20:0-CoA was significantly lower in gray matter and neuronal cells than in white matter, whereas the activity for endogenous substrates was almost the same for microsomes obtained from gray and white matter. This result suggests that the condensation enzyme for 20:0-CoA may be different from that for endogenous 16:0-CoA or 20:4-CoA in swine cerebral microsomes.  相似文献   

3.
The elongation of arachidoyl-CoA by swine cerebral microsomes resulted in the production of behenic acid (22:0) and lignoceric acid (24:0) concomitantly. When 4S-[4-2H1]NADPH was used for the elongation of arachidoyl-CoA, the incorporation of two deuterium atoms into 22:0 was observed by the technique of mass fragmentography. Furthermore, the incorporation of four deuterium atoms into 24:0 was also detected. On the other hand, when 4R-[4-2H1]NADPH was used, no deuterium was incorporated into the elongated products.  相似文献   

4.
Characteristics of condensation and overall elongation of very-long-chain fatty-acyl-CoAs in swine cerebral microsomes were studied using radio high-performance liquid chromatography (RHPLC) and gas chromatography-mass spectrometry (GC-MS). The monounsaturated fatty-acyl-CoA depressed both the condensation and overall elongation activities of endogenous substrates and also of exogenous saturated fatty-acyl-CoA. The extent of the decrease of the elongation activity was dependent on the concentration and the chain length of the exogenous fatty-acyl-CoAs. The dependence of the condensation activity of monounsaturated fatty-acyl-CoA on the concentration of malonyl-CoA suggested that the non-Michaelis-Menten type kinetics was dominant for oleoyl-CoA, however, a normal kinetic pattern was obtained for endogenous palmitoyl-CoA and arachidonoyl-CoA with Km = 37 microM to malonyl-CoA. The condensation activity for icosanoyl-CoA (20:0-CoA) was inhibited by icosenoyl-CoA (20:1-CoA) in a non-competitive manner, which suggested that the condensation enzyme, or at least the active center of the enzyme for icosenoyl-CoA, was different from that for icosanoyl-CoA.  相似文献   

5.
Presence of three B-type cytochromes in swine cerebral microsomes   总被引:1,自引:0,他引:1  
In swine cerebral microsomes purified with sucrose density gradient and glycerol-cholate gradient centrifugations, it was observed that a new b-type cytochrome which had alpha-peak at 560 nm and Soret peak at 428 nm at 23 degrees C was reduced preferentially by anaerobic NADPH in the presence of cyanide. The b5-type cytochromes were reduced completely by both NADH and NADPH anaerobically. Three b-type cytochromes were partially purified into two b-type, spectroscopically distinct from each other, and the new b-type (b560-5) cytochromes.  相似文献   

6.
The elongation of icosenoyl-CoA (20:1-CoA) in swine cerebral microsomes resulted in the synthesis of docosenoic acid (22:1) and tetracosenoic acid (24:1), but the synthesis of hexacosenoic acid (26:1) was negligible. In contrast, in the presence of sulfhydryl reagents (0.6 mM N-ethylmaleimide [NEM] or 0.3 mM p-chloromercuriphenylsulfonic acid [PCMPS]) the synthesis of 26:1 was remarkably enhanced. We suggest that the synthesis of 26:1 from 20:1-CoA was more enhanced by NEM or PCMPS as a result of activation of the condensation step in the elongation of 24:1 (intermediate) to 26:1.  相似文献   

7.
Sakuma S  Fujimoto Y  Katoh Y  Kitao A  Fujita T 《Life sciences》2000,66(12):1147-1153
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of palmitic acid (PA) and palmitoyl-CoA (PA-CoA) on the PG and AA-CoA formation from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [14C]-AA in 0.1 M-Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl2 and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. PA (10-100 microM) had no effect on the PG and AA-CoA formation from either 60 or 5 microM AA. PA-CoA (10-100 microM) was without effect on the PG and AA-CoA formation from 60 microM AA, whereas it markedly decreased the PG formation (6-40%) and increased the AA-CoA formation (1.1-2.3-fold) from 5 microM AA, showing that the effects of PA-CoA on the PG and AA-CoA formation change depending on the AA concentration. These results suggest that PA-CoA, but not PA, may regulate the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that this in-vitro method using 5 microM AA may be useful for clarifying the homeostatic control of the metabolic fate of AA into these two enzymatic pathways.  相似文献   

8.
Insect cuticular hydrocarbons are synthesized de novo in integumental tissue through the concerted action of fatty acid synthases (FASs), fatty acyl-CoA elongases, a reductase, and a decarboxylase to produce hydrocarbons and CO2. Elongation of fatty acyl-CoAs to very long chain fatty acids was studied in the integumental microsomes of the German cockroach, Blatella germanica. Incubation of [1-14C]palmitoyl-CoA, malonyl-CoA, and NADPH resulted in the production of 18-CoA with minor amounts of C20, C22, C24, C30, and C32 labeled acyl-CoA moieties. Similar experiments with [1-14C]stearoyl-CoA rendered C20-CoA as the major product, and lesser amounts of C22 and C24-CoAs were also detected. After solubilization of the microsomal FAS, kinetic parameters were determined radiochemically or by measuring NADPH consumption. The reaction velocity was linear for up to 3 min incubation time, and with a protein concentration up to 0.025 microg/microl. The effect of the chain length on the reaction velocity was compared for palmitoyl-CoA, stearoyl-CoA, and eicosanoyl-CoA. The optimal substrate concentration was 10 microM for C16-CoA, between 8 and 12 microM for C18-CoA, and close to 3 microM for C20-CoA. In vivo hydrocarbon biosynthesis was inhibited from 55.5 to 72.5% in the presence of 1 mM trichloroacetic acid, a known inhibitor of elongation reactions.  相似文献   

9.
10.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of linoleic acid (LA) and 13-hydroperoxyoctadecadienoic acid (13-HPODE) on the PG and AA-CoA formation from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [(14)C]-AA in 0.1M Tris-HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. LA (10-50 microM) reduced only PG formation from both 60 and 5 microM AA. 13-HPODE (10-50 microM) also reduced PG formation from 60 and 5 microM AA, but the inhibitory potency was much stronger than that by LA. Furthermore, 13-HPODE had the potential to increase the AA-CoA formation with a decrease in the PG formation from 5 microM AA. These results suggest that 13-HPODE, but not LA, may shift AA away from COX pathway into ACS pathway under low substrate concentration (near physiological concentration of AA).  相似文献   

11.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To explore the possible actions of endocrine disruptors on the metabolic fate of free AA into these two pathways, we investigated the effects of nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DBP), benzyl-n-butyl phthalate (BBP) and di-2-ethylhexyl phthalate (DEHP) on the formation of PG and AA-CoA from 5 microM AA (close to the physiological concentration of the substrate) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 5 microM [(14)C]-AA in 0.1 M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. NP (1-200 microM) strongly enhanced the AA-CoA formation with a coincident decrease in the PG formation. BPA, DBP, BBP and DEHP failed to show any effect on the PG and AA-CoA formation up to 200 microM. Experiments utilizing 60 microM AA as the substrate concentration indicated that, under a low concentration of AA, NP decreases PG formation by inhibiting the COX activity, and reduces the AA flow into the COX pathway through inhibition on the COX activity, increasing availability of the substrate for the ACS and leading to enhanced AA-CoA formation. These results firstly show that NP has the potential to disturb the balance of PG and AA-CoA formations under normal physiological conditions.  相似文献   

12.
Microsomes purified from porcine neutrophils containing the fatty acid chain-elongation system for long- and very-long-chain fatty acyl-CoAs, and several enzymatic characters for the elongation of palmitoyl-CoA (16:0-CoA) and arachidoyl-CoA (20:0-CoA) were examined. The heat-inactivation profile for the elongation of 16:0-CoA was different from that of 20:0-CoA, suggesting the presence of different enzyme systems for palmitoyl-CoA and arachidoyl-CoA. Contrary to the elongation system of brain microsomes, the successive synthesis of lignoceric acid (24:0) from 20:0-CoA at 60 microM was not prominent under normal conditions in the neutrophil microsomes. The synthesis of behenic acid (22:0) was slightly inhibited by 0.5 mM N-ethylmaleimide (NEM) present in the assay mixture, whereas the pre-treatment of microsomes with 0.5 mM NEM largely inhibited the synthesis of 22:0 from 20:0-CoA. The synthesis of 24:0, however, was enhanced by 0.5 mM NEM in the elongation of 20:0-CoA and the rate of 24:0 synthesis became dominant over the synthesis of 22:0. These results suggested that the elongation enzyme for very-long-chain fatty acyl-CoA, especially for 20:0-CoA elongation to 22:0 in the neutrophil microsomes contained NEM-sensitive sulfhydryl groups in the active center and the mechanism for the synthesis of 24:0 through successive elongation from 20:0-CoA was different from that of 22:0, as the former was enhanced by NEM whereas the latter was strongly inhibited.  相似文献   

13.
14.
S Pollet  J M Bourre  G Chaix  O Daudu  N Baumann 《Biochimie》1975,57(9):1079-1086
In brain microsomes, palmitate and stearate elongation involve a membrane lipid-bound substrate. After elongation by malonyl-CoA, acyl-products are partially bound to proteins. Acyl-proteins are not found when endogenous fatty acid elongation takes place. In the dysmyelinating Quaking mouse mutants, "stearyl-membrane" substrate formation is normal; thus, the deficiency observed in very long chain fatty acid formation is not due to a lack in substrate formation.  相似文献   

15.
16.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To clarify factors deciding the metabolic fate of free AA into these two pathways, we investigated the effects of a nitric oxide (NO) donor 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7), and peroxynitrite (ONOO(-)) on the formation of PG and AA-CoA from high and low concentrations of AA (60 and 5 micro M) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 micro M [14C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced GSH and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. When 60 micro M AA was used as the substrate concentration, NOC7 stimulated the PG formation at 0.5 micro M, and inhibited it at 50 and 100 micro M, without affecting the AA-CoA formation. When 5 micro M AA was used as the substrate concentration, NOC7 showed no effect on the PG and AA-CoA formation up to 10 micro M or below, but enhanced the AA-CoA formation with a coincident decrease in the PG formation at 50 micro M or over. Experiments utilizing a NO antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, revealed that the observed effects of NOC7 using 60 and 5 micro M AA are caused by NO. On the other hand, ONOO(-) stimulated the PG formation from 60 micro M AA, with no alteration in the AA-CoA formation at a concentration of 100 micro M, but when 5 micro M AA was used as the substrate concentration, it was without effect on the PG and AA-CoA formation. These findings indicate that actions of NO and ONOO(-) on the PG and AA-CoA formation by the kidney medulla microsomes may change depending on the substrate concentration. The effects of NO using 5 micro M AA were reversed by the addition of the superoxide generating system (xanthine-xanthine oxidase plus catalase), indicating that superoxide is a vital modulator of the action of NO. These results suggest that NO, but not ONOO(-), can be a regulator of the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that superoxide may play an important role in the action of NO.  相似文献   

17.
18.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). We have previously shown that palmitoyl-CoA (PA-CoA) shifts AA away from the COX pathway into the ACS pathway in rabbit kidney medulla at a low concentration of AA (5 microM, close to the physiological concentration of substrate). In the present study, we investigated the effects of stearoyl (SA)-, oleoyl (OA)- and linoleoyl (LA)- CoAs on the formation of PG and AA-CoA from 5microM AA in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 5microM [(14)C]-AA in 0.1 M-Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2)and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. SA- and OA-CoAs increased AA-CoA formation with a reduction of PG formation, as well as PA-CoA. On the other hand, LA-CoA decreased formation of both PG and AA-CoA. These results suggest that fatty acyl CoA esters can be regulators of PG and AA-CoA formation in kidney medulla under physiological conditions.  相似文献   

19.
In the presence of ciprofloxacin (CPFX), free radical adduct formation was demonstrated in rat cerebral microsomes using a spin trap α-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone by electron spin resonance spectroscopy. Active microsomes, dihydronicotinamide-adenine dinucleotide phosphate, and ciprofloxacin were necessary for the formation of a spin trap/radical adduct. Adduct formation increased dose-dependently at 0.5–1?mM CPFX concentration for 180?min, and 0.3–1 mM concentration level for 240?min. The addition of SKF 525A, ZnCl2 or desferrioxamine to the incubation system caused complete inhibition of the radical formation. However, pretreatment of microsomal system with superoxide dismutase (SOD) did not induce any protective effect. Induction of lipid peroxidation, and depletion of thiol levels by CPFX were also shown in the system. These results strongly suggested that CPFX produces free radical(s) in the cerebral microsomes of rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号