首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide production by NADPH oxidase is essential for bactericidal properties of neutrophils. However, molecular mechanisms underlying the activation of this enzyme remain largely unknown. Here, using bovine neutrophils we examined the role of p38 mitogen-activated protein kinase (p38 MAPK) in the signaling pathways of the NADPH oxidase activation. Superoxide production was induced by stimulation with serum-opsonized zymosan (OZ) and attenuated by p38 MAPK inhibitor, SB203580. OZ stimulation induced the translocation of p47(phox) and Rac to the plasma membrane and SB203580 completely blocked the translocation of Rac, but only partially blocked that of p47(phox). Furthermore, SB203580 abolished the OZ-elicited activation of Rac, which was assessed by detecting the GTP-bound form of this protein. Phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002, blocked not only p38 MAPK activation but also Rac activation. However, SB203580 showed no effect on the PI3K activity. These results suggested that PI3K/p38 MAPK/Rac pathway was present in the activation of NADPH oxidase in bovine neutrophils.  相似文献   

2.
Accumulating evidence indicates that protein phosphorylation regulates Nox activity. In this report, we show that serine282 residue of Nox activator 1 (NoxA1) is phosphorylated by Erk in response to EGF resulting in desensitization of Nox1 activity. Specifically, murine NoxA1 is detected as two independent protein bands in SDS PAGE, and the form of protein with higher mobility shifted to and merged with the one with lower mobility in response to EGF treatment. Pretreatment with PD98059 resulted in inhibition of NoxA1 migration in response to EGF indicating that Erk was involved in the process. Site-directed mutagenesis showed that S282A mutant but not S239A mutant failed to respond to EGF, demonstrating that serine282 is the target amino acid of Erk. Expression of S282A mutant of NoxA1 in these cells led to increased superoxide anion production in response to EGF compared to expression of the wild type, whereas the expression of S282E, a phosphomimetic mutant, resulted in significantly decreased superoxide anion generation. We also tested whether the phosphorylation of serine282 of NoxA1 affects Rac activation. Expression of S282A mutant NoxA1 up-regulated the Rac activity, whereas expression of S282E mutant led to the abrogation of Rac activation. Taken together, these results demonstrate that phosphorylation of NoxA1 is a part of the feedback mechanism that functions through activation of Rac with a net outcome of negative modulation of Nox1 activity.  相似文献   

3.
Neurodegenerative diseases are attributed to impairment of the ubiquitin–proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.  相似文献   

4.
It is well established that growth-factor-induced reactive oxygen species (ROS) act as second messengers in cell signaling. We have previously reported that betaPix, a guanine nucleotide exchange factor for Rac, interacts with NADPH oxidase 1 (Nox1) leading to EGF-induced ROS generation. Here, we report the identification of the domains of Nox1 and betaPix responsible for the interaction between the two proteins. GST pull-down assays show that the PH domain of betaPix binds to the FAD-binding region of Nox1. We also show that overexpression of the PH domain of betaPix results in inhibition of superoxide anion generation in response to EGF. Additionally, NADPH oxidase Organizer 1 (NoxO1) is shown to interact with the NADPH-binding region of Nox1. These results suggest that the formation of the complex consisting of Nox1, betaPix, and NoxO1 is likely to be a critical step in EGF-induced ROS generation.  相似文献   

5.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

6.
Reactive oxygen species have been implicated as possible second messengers in mitogenic signal transduction. We demonstrate that in normal fibroblasts the treatment with the two inhibitors of phagocytic NADH/NADPH oxidase prevents tyrosine phosphorylation of platelet-derived growth factor receptor upon the exposure of serum-deprived cells to growth factors. Furthermore, the inhibition of NADH/NADPH oxidase abolishes ERKs activation and p21(waf1) accumulation that occurs when cells are exposed to growth factors. Finally, NADH/NADPH inhibitors prevent the p66(Shc) Ser-phosphorylation induced by serum and by phorbol 12-myristate-13-acetate, which suggests that the direct target(s) of reactive oxygen species is(are) located upstream from the machinery connecting growth factor receptors to Ras.  相似文献   

7.
Members of NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species (ROS) and are known to be involved in several physiological functions in response to various stimuli including UV irradiation. UVB-induced ROS have been associated with inflammation, cytotoxicity, cell death, or DNA damage in human keratinocytes. However, the source and the role of UVB-induced ROS remain undefined.Here, we show that Nox1 is involved in UVB-induced p38/MAPK activation and cytotoxicity via ROS generation in keratinocytes. Nox1 knockdown or inhibitor decreased UVB-induced ROS production in human keratinocytes. Nox1 knockdown impaired UVB-induced p38 activation, accompanied by reduced IL-6 levels and attenuated cell toxicity. Treatment of cells with N-acetyl-L-cysteine (NAC), a potent ROS scavenger, suppressed p38 activation as well as consequent IL-6 production and cytotoxicity in response to UVB exposure. p38 inhibitor also suppressed UVB-induced IL-6 production and cytotoxicity. Furthermore, the blockade of IL-6 production by IL-6 neutralizing antibody reduced UVB-induced cell toxicity.In vivo assay using wild-type mice, the intradermal injection of lysates from UVB-irradiated control cells, but not from UVB-irradiated Nox1 knockdown cells, induced inflammatory swelling and IL-6 production in the skin of ears. Moreover, administration of Nox1 inhibitor suppressed UVB-induced increase in IL-6 mRNA expression in mice skin.Collectively, these data suggest that Nox1-mediated ROS production is required for UVB-induced cytotoxicity and inflammation through p38 activation and inflammatory cytokine production, such as IL-6. Thus, our findings suggest Nox1 as a therapeutic target for cytotoxicity and inflammation in response to UVB exposure.  相似文献   

8.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

9.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

10.
Small ubiquitin-like modifier 1 (SUMO1) is a member of the superfamily of ubiquitin-like proteins. Despite its structural similarity with ubiquitin, SUMO1 does not seem to play any role in protein degradation and its precise biological function is poorly understood. During our studies on heat-shock responses, we found that heat-shock stress increased SUMO1 conjugation in a dose-dependent manner. Intriguingly, SUMO1 conjugation resulted in decrease of intracellular ROS generation and protection cells from death under heat-shock stress. We showed that NADPH oxidase 2 (NOX2) is a target protein of sumoylation by SUMO1 using immunoprecipitation and is colocalized with SUMO1 at plasma membrane. Additionally, we demonstrated that the attenuation in intracellular ROS generation resulted from inhibition of NADPH oxidase complex (NOX) activity. These results suggested that SUMO1 plays an important role in modulation of NOX activity required for ROS generation.  相似文献   

11.
12.
Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.  相似文献   

13.
14.
Excessive DNA damage induced by ionising radiation (IR) to normal tissue cells is known to trigger cellular senescence, a process termed stress-induced premature senescence (SIPS). SIPS is often accompanied by the production of reactive oxygen species (ROS), and this is reported to be important for the initiation and maintenance of SIPS. However, the source of ROS during SIPS after IR and their significance in radiation-induced normal tissue damage remain elusive. In the present study, we tested the hypothesis that the NADPH oxidase (NOX) family of proteins mediates ROS production in SIPS-induced cells after IR and plays a role in SIPS-associated biological events. X-irradiation of primary mouse embryonic fibroblasts (MEFs) resulted in cellular senescence and the concomitant increase of intracellular ROS. Among all six murine NOX isoforms (NOX1–4 and DUOX1/2), only NOX4 was detectable under basal conditions and was upregulated following IR. In addition, radiation-induced ROS production was diminished by genetic or pharmacological inhibition of NOX4. Meanwhile, NOX4 deficiency did not affect the induction of cellular senescence after IR. Furthermore, the migration of human monocytic U937 cells to the culture medium collected from irradiated MEFs was significantly reduced by NOX4 inhibition, suggesting that NOX4 promotes the recruitment of inflammatory cells. Collectively, our findings imply that NOX4 mediates ROS production in radiation-induced senescent cells and contributes to normal tissue damage after IR via the recruitment of inflammatory cells and the exacerbation of tissue inflammation.  相似文献   

15.
Helicobacter pylori infection has been suggested to stimulate expression of the NADPH oxidase 1 (Nox1)-based oxidase system in guinea pig gastric epithelium, whereas Nox1 mRNA expression has not yet been documented in the human stomach. PCR of human stomach cDNA libraries showed that Nox1 and Nox organizer 1 (NOXO1) messages were absent from normal stomachs, while they were specifically coexpressed in intestinal- and diffuse-type adenocarcinomas including signet-ring cell carcinoma. Immunohistochemistry showed that Nox1 and NOXO1 proteins were absent from chronic atrophic gastritis (15 cases), adenomas (4 cases), or surrounding tissues of adenocarcinomas (45 cases). In contrast, Nox1 and its partner proteins were expressed in intestinal-type adenocarcinomas (19/21 cases), diffuse-type adenocarcinomas (15/15 cases), and signet-ring cell carcinomas (9/9 cases). Confocal microscopy revealed that Nox1, NOXO1, Nox activator 1, and p22phox were predominantly associated with Golgi apparatus in these cancer cells, while diffuse-type adenocarcinomas also contained cancer cells having Nox1 and its partner proteins in their nuclei. Nox1-expressing cancer cells exhibited both gastric and intestinal phenotypes, as assessed by expression of mucin core polypeptides. Thus, the Nox1-base oxidase may be a potential marker of neoplastic transformation and play an important role in oxygen radical- and inflammation-dependent carcinogenesis in the human stomach.  相似文献   

16.
In this study we have investigated the effects of the small GTP-binding-protein Ras on the redox signalling of the human neuroblastoma cell line, SK-N-BE stably transfected with HaRas(Val12). The levels of reactive oxygen species (ROS) and superoxide anions were significantly higher in HaRas(Val12) expressing (SK-HaRas) cells than in control cells. The treatment of cells with 4-(2-aminoethyl) benzenesulfonylfluoride, a specific inhibitor of the membrane superoxide generating system NADPH oxidase, suppressed the rise in ROS and significantly reduced superoxide levels produced by SK-HaRas cells. Moreover, HaRas(Val12) induced the translocation of the cytosolic components of the NADPH oxidase complex p67(phox) and Rac to the plasma membrane. These effects depended on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK1/2) pathway, as the specific MEK inhibitor, PD98059, prevented HaRas-mediated increase in ROS and superoxide anions. In contrast, the specific phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and wortmannin were unable to reverse the effects of HaRas(Val12). Moreover, cholinergic stimulation of neuroblastoma cells by carbachol, which activated endogenous Ras/ERK1/2, induced a significant increase in ROS levels and elicited membrane translocation of p67(phox) and Rac. ROS generation induced by carbachol required the activation of ERK1/2 and PI3K. Hence, these data indicate that HaRas-induced ERK1/2 signalling selectively activates NADPH oxidase system in neuroblastoma cells.  相似文献   

17.
Thioredoxin reductase 1 (TrxR1) has emerged as a potential target for cancer therapy, because it is overexpressed in several types of cancers and associated with increased tumour growth and poor patient prognosis. Alantolactone (ALT), a natural sesquiterpene lactone originated from traditional folk medicine Inula helenium L., has been reported to exert antitumor activity in various tumours. However, the effect of ALT on human gastric cancer cells and its underlying mechanism remains unknown. In this study, we showed that ALT inhibited cell proliferation and induced cell apoptosis in gastric cancer cells. Mechanistically, our data found that ALT induced reactive oxygen species (ROS) production by inhibiting TrxR1 activity, resulting in the activation of p38 mitogen-activated protein kinase (MAPK) pathway and eventually cell apoptosis in gastric cancer cells. And the effects of ALT were reversed by pre-treatment with NAC (a scavenger of ROS). Further investigation revealed that ALT displayed synergistic lethality with erastin against gastric cancer cells, which demonstrating combined inhibition of TrxR1 and glutathione (GSH) leads to a synergistic effect in gastric cancer cells. More importantly, ALT treatment markedly reduced the activity of TrxR1 in vivo and inhibited the growth of gastric cancer xenografts without exhibiting significant toxicity. Taken together, these findings suggest that ALT may be used as a novel therapeutic agent against human gastric cancer.  相似文献   

18.
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are toxic environmental contaminants known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that acute treatment by BaP markedly increased expression of the NADPH oxidase subunit gene neutrophil cytosolic factor 1 (NCF1)/p47phox in primary human macrophages; NCF1 was similarly up-regulated in alveolar macrophages from BaP-instilled rats. NCF1 induction in BaP-treated human macrophages was prevented by targeting AhR, through its chemical inhibition or small interference RNA-mediated down-modulation of its expression. BaP moreover induced activity of the NCF1 promoter sequence, containing a consensus AhR-related xenobiotic-responsive element (XRE), and electrophoretic mobility shift assays and chromatin immunoprecipitation experiments indicated that BaP-triggered binding of AhR to this XRE. Finally, we showed that BaP exposure resulted in p47phox protein translocation to the plasma membrane and in potentiation of phorbol myristate acetate (PMA)-induced superoxide anion production in macrophages. This BaP priming effect toward NADPH oxidase activity was inhibited by the NADPH oxidase specific inhibitor apocynin and the chemical AhR inhibitor α-naphtoflavone. These results indicated that BaP induced NCF1/p47phox expression and subsequently enhanced superoxide anion production in PMA-treated human macrophages, in an AhR-dependent manner; such an NCF1/NADPH oxidase regulation by polycyclic aromatic hydrocarbons may participate in deleterious effects toward human health triggered by these environmental contaminants, including atherosclerosis and smoking-related diseases.  相似文献   

19.
《Free radical research》2013,47(10):1124-1135
Abstract

Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   

20.
Role of plant respiratory burst oxidase homologs in stress responses   总被引:1,自引:0,他引:1  
Plant respiratory burst oxidase homologs (Rbohs), which are also named nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), are the homologs of mammalian phagocyte gp91phox. As a unique among other reactive oxygen species (ROS) production mechanisms in plants, NADPH oxidases can integrate different signal transduction pathways, such as calcium, protein phosphorylation catalysed by protein kinases, nitric oxide, and lipid messengers. Coupling with genetic studies, the ability of plant NADPH oxidases to integrate different signal transduction pathways with ROS production demonstrates their involvement in many important biological processes in cells, such as morphogenesis and development, and stress responses. Here, we focus on several current studies concerning the role of plant NADPH oxidases in stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号