首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a working model for the uptake of transforming DNA based on evidence taken from both Bacillus subtilis and Streptococcus pneumoniae, the ComG proteins are proposed to form a structure that provides access for DNA to the ComEA receptor through the peptidoglycan. DNA would then be delivered to the ComEC-ComFA transport complex. A DNA strand would be degraded by a nuclease, while its complement is pulled into the cell by ComFA through an aqueous pore formed by ComEC. The nuclease is known in S. pneumoniae only as EndA. We have examined the processing (i.e. binding, degradation and internalization) of DNA in S. pneumoniae strains lacking candidate uptake proteins. Mutants were generated by transposon insertion in endA, comEA/C, comFA/C, comGA and dprA. Processing of DNA was abolished only in a comGA mutant. As significant binding was measured in comEA mutants, we suggest the existence of two stages in binding: surface attachment (abolished in a comGA mutant) required for and preceding deep binding (by ComEA). Abolition of degradation in comGA and comEA mutants indicated that, despite its membrane location, EndA cannot access donor DNA by itself. We propose that ComEA is required to deliver DNA to EndA. DNA was still bound and degraded in comEC and comFA mutants. We conclude that recruitment of EndA can occur in the absence of ComEC or ComFA and that EndA is active even when the single strands it produces are not pulled into the cell. Finally, inactivation of dprA had no effect on the internalization of DNA, indicating that DprA is required at a later stage in transformation.  相似文献   

2.
A nuclease that could be recovered from the supernatant of cultures, as well as from cell-free extracts, of the cyanobacterium Anabaena sp. PCC 7120 was identified as a 29 kDa polypeptide by its ability to degrade DNA after electrophoresis in DNA-containing SDS-polyacrylamide gels. Some clones of a gene library of strain PCC 7120 established in Escherichia coli were found to produce the 29 kDa nuclease. The nucA gene encoding this nuclease was subcloned and sequenced. The deduced polypeptide, NucA, had a molecular weight of 29,650, presented a presumptive signal peptide in its N-terminal region and showed homology to the products of the nuc gene from Serratia marcescens and the NUC1 gene from Saccharomyces cerevisiae. The NucA protein from Anabaena itself, or from the cloned nucA gene expressed in E. coli, catalysed the degradation of both RNA and DNA, had the potential to act as an endonuclease, and functioned best in the presence of Mn2+ or Mg2+. An Anabaena nucA insertional mutant was generated which failed to produce the 29 kDa nuclease.  相似文献   

3.
4.
Korn C  Meiss G  Gast F  Gimadutdinow O  Urbanke C  Pingoud A 《Gene》2000,253(2):221-229
A series of T7-promoter based bicistronic expression vectors was constructed in order to produce the complex of the Anabaena sp. PCC 7120 DNA/RNA non-specific nuclease NucA and its inhibitor NuiA. With all constructs, tandem expression of nucA and nuiA results in aggregation and inclusion body formation of NucA, independent of the order of the genes, the relative expression of the two proteins and the temperature applied during expression. Two constructs in which nuiA is the first and nucA the second cistron lead to an approximately one order of magnitude higher expression of nuiA compared with nucA. In these cells inclusion bodies are formed which contain NucA and NuiA in a 1:1 molar ratio. The complex can be solubilized with 6M urea after disruption of the cells by sonication, renatured by dialysis and purified to homogeneity. 2mg of the complex are obtained from 1l Escherichia coli culture. As shown by gel filtration and analytical ultracentrifugation, our system leads to a highly pure and homogeneous complex preparation, as required for biophysical and structural studies. Thus, our new method is a superior alternative for the production of the NucA/NuiA complex in which separately produced nuclease and inhibitor are mixed, and an excess of one or the other component, as well as aggregates of NucA, have to be removed from the preparation.  相似文献   

5.
Upon apoptosis induction, translocation of mammalian mitochondrial endonuclease G (EndoG) to the nucleus coincides with large-scale DNA fragmentation. Here, we describe for the first time a homologue of EndoG in filamentous fungi by investigating if the Aspergillus nidulans homologue of the EndoG gene, named nucA(EndoG), is being activated during farnesol-induced cell death. Our results suggest that NucA is not involved in cell death, but it plays a role in the DNA-damaging response in A. nidulans.  相似文献   

6.
为构建乳酸乳球菌食品级分泌表达载体,通过PCR扩增质粒pMG36e的p32启动子片段及乳酸乳球菌MG1363未知分泌蛋白(Usp45)基因的核糖体结合位点、分泌信号肽和成熟肽前11个氨基酸的编码序列(SPusp45),克隆到食品级载体pSH91中,构建食品级分泌性表达载体pSQ;克隆报告基因金黄色葡萄球菌核酸酶(NucA)成熟肽的编码序列nucA到pSQ中分泌信号后,转化乳酸乳球菌MBP71,构建了乳酸乳球菌食品级分泌性表达系统L lactis/pSQ-nucA;通过TB-D法和酶谱法检测L lactis/pSQ-nucA的表达形式、表达量并与以前构建的L lactis/pSQZ-nucA系统表达能力进行比较,结果发现L lactis/pSQ-nucA能够分泌性表达NucA,分泌性表达的NucA量大约是胞内NucA的10倍;L lactis/pSQ-nucA的表达量高于lactis/pSQZ-nucA.为进一步目的蛋白的的分泌性表达及食品级疫苗的研制奠定了基础.  相似文献   

7.
Infection of Escherichia coli by bacteriophage lambda depends on two membrane protein complexes: (i) maltoporin (LamB) in the outer membrane for adsorption and (ii) the IIC(Man)-IID(Man) complex of the mannose transporter in the inner membrane for DNA penetration. IIC(Man) and IID(Man) are components of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) which together with the IIAB(Man) subunit mediate transport and phosphorylation of sugars. To identify structural determinants important for penetration of lambda DNA, the homologous IIC-IID complexes of E. coli, K. pneumoniae and B. subtilis, and chimeric complexes between the IIC and IID were characterized. All three complexes support sugar transport in E. coli. Only IIC-IID of E. coli and B. subtilis also support bacteriophage lambda infection. The six chimeric complexes had lost transport activity, but three containing IIC of E. coli or B. subtilis continue to support bacteriophage lambda infection. Complexes containing IIC(Man) and fusion proteins between truncated IID(Man) and alkaline phosphatase or beta-galactosidase support penetration of lambda DNA if less than 100 residues are missing from the C-terminus of IID(Man). Truncation of IIC(Man) renders the complex unstable. Taken together, these results suggest, that IIC is the major specificity determinant for lambda infection but that the IIC subunit is stably expressed only in a complex with the IID subunit. Lambda DNA in transit across the periplasmic space, but not transforming plasmid DNA, is inaccessible to the non-specific nuclease NucA of Anabaena sp. targeted to the periplasmic space either in soluble form or as a fusion protein to the C-terminus of IID(Man).  相似文献   

8.
A structural model of the DNA/RNA non-specific endonuclease NucA from Anabaena sp. PCC7120 that has been obtained on the basis of the three-dimensional structure of the related Serratia nuclease, suggests that the overall architecture of the active site including amino acid residues H124, N155 and E163 (corresponding to H89, N119 and E127 in Serratia nuclease) is similar in both nucleases. Substitution of these residues by alanine leads to a large reduction in activity (<0.1 %), similarly as observed for Serratia nuclease demonstrating that both enzymes share a similar mechanism of catalysis with differences only in detail. NucA is inhibited by its specific polypeptide inhibitor with a K(i) value in the subpicomolar range, while the related Serratia nuclease at nanomolar concentrations is only inhibited at an approximately 1000-fold molar excess of NuiA. The artificial chromophoric substrate deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) is cleaved by NucA as well as by Serratia nuclease. Cleavage of this analogue by NucA, however, is not inhibited by NuiA, suggesting that small molecules gain access to the active site of NucA in the enzyme-inhibitor complex under conditions where cleavage of DNA substrates is completely inhibited. The active site residue E163 seems to be the main target amino acid for inhibition of NucA by NuiA, but R93, R122 and R167 (corresponding to K55, R87, R131 in Serratia nuclease) are also involved in the NucA/NuiA interaction. NuiA deletion mutants show that the structural integrity of the N and C-terminal region of the inhibitor is important for complex formation with NucA and inhibition of nuclease activity. Based on these results a mechanism of DNA cleavage by NucA and its inhibition by NuiA is proposed.  相似文献   

9.
10.
Ana Camacho  Patricia G. Spear 《Cell》1978,15(3):993-1002
Isolated restriction endonuclease fragments of the herpes simplex virus type 1 (HSV-1) genome were introduced into hamster embryo cells to identify DNA sequences capable of transforming the cells with respect to acquisition of properties correlated with tumorigenicity. One of the fragments generated by cleavage of HSV-1 DNA with the restriction endonuclease Xba I was found to induce transformation at a frequency of about 10 colonies per quantity of fragment recovered from 1 μg of uncut DNA; fractions containing the other Xba I fragments failed to induce transformation reproducibly, although occasional colonies were detected. The fragment with transforming activity (Xba I-F) is 15.5 × 106 daltons in molecular weight and is located between 0.30 and 0.45 map units on the HSV-1 genome. The Xba I-F transformants obtained were selected for their ability to replicate in low concentrations of serum; in addition, they were found to attain high saturation densities in the presence of 10% serum and to form colonies in semisolid medium. Moreover, the transformed cells produced at least one of the viral gene products (a membrane glycoprotein) encoded in the fragment used for transformation, indicating not only that viral DNA was incorporated into the cells, but also that viral genes were expressed.  相似文献   

11.
《Gene》1997,192(1):191-198
The pathway for binding, processing and transport of transforming DNA into competent cells of Bacillus subtilis is described. The known proteins involved in mediating these processes are reviewed in turn, including several that resemble proteins required for type-IV pilus assembly and function, and those involved in protein secretion. Based on the phenotypes of null mutations in the cognate genes for these proteins, on similarities to other proteins and on membrane localization and topology data, proposals are made for the roles of the individual proteins in the transformation process. A dynamic model is suggested for the presentation of transforming DNA to the transport apparatus.  相似文献   

12.
The competence-related phenotypes of mutations in each of the four open reading frames associated with the comE locus of Bacillus subtilis are described. comEA and comEC are required for transformability, whereas the products of comEB and of the overlapping comER, which is transcribed in the reverse direction, are dispensable. Loss of the comEA product decreases the binding of DNA to the competent cell surface and the internalization of DNA, in addition to exhibiting a profound effect on transformability. The comEC product is required for internalization but is dispensable for DNA binding. ComEA is shown to be an integral membrane protein, as predicted from hydropathy analysis, with its C-terminal domain outside the cytoplasmic membrane. This C-terminal domain possesses a sequence with similarity to those of several proteins known to be involved in nucleic acid transactions including UvrC and a human protein that binds to the replication origin of the Epstein-Barr virus.  相似文献   

13.
Transformation requires specialized proteins to facilitate the binding and uptake of DNA. The genes of the Bacillus subtilis comG operon (comGA-G) are required for transformation and to assemble a structure, the pseudopilus, in the cell envelope. No role for the pseudopilus has been established and the functions of the individual comG genes are unknown. We show that among the comG genes, only comGA is absolutely required for DNA binding to the cell surface. ComEA, an integral membrane DNA-binding protein plays a minor role in the initial binding step, while an unidentified protein which communicates with ComGA must be directly responsible for binding to the cell. We show that the use of resistance to DNase to measure 'DNA uptake' reflects the movement of transforming DNA to a protected state in which it is not irreversibly associated with the protoplast, and presumably resides outside the cell membrane, in the periplasm or associated with the cell wall. We suggest that ComGA is needed for the acquisition of DNase resistance as well as for the binding of DNA to the cell surface. Finally, we show that the pseudopilus is required for DNA uptake and we offer a revised model for the transformation process.  相似文献   

14.
It was evidenced that the single strand-specific S1 endonuclease could cleave the ultraviolet light-irradiated T7 DNA. The cleavage of ultraviolet light-irradiated T7 DNA by S1 endonuclease was studied by sucrose density gradient centrifugation. The extent of cleavage was proportional to the dose of ultraviolet light given, the concentration of endonuclease and the ionic strength in the reaction. The cleavage consisted of both single-strand and double-strand breaks. The double-strand breaks were observed even at relatively lower dose of ultraviolet light. It seems likely that S1 endonuclease can recognize the alteration in the double-helical structure produced by ultraviolet light-irradiation rather than specifically attack ultraviolet light-induced photoproducts.  相似文献   

15.
Steady-state parameters governing cleavage of pBR322 DNA by EcoRI endonuclease are highly sensitive to ionic environment, with K(m) and k(cat) increasing 1,000-fold and 15-fold, respectively, when ionic strength is increased from 0.059 to 0.23 M. By contrast, pre-steady-state analysis has shown that recognition, as well as first and second strand cleavage events that occur once the enzyme has arrived at the EcoRI site, are essentially insensitive to ionic strength, and has demonstrated that the rate-limiting step for endonuclease turnover occurs after double-strand cleavage under all conditions tested. Furthermore, processive cleavage of a pBR322 variant bearing two closely spaced EcoRI sites is governed by the same turnover number as hydrolysis of parental pBR322, which contains only a single EcoRI sequence, ruling out slow release of the enzyme from the cleaved site or a slow conformational change subsequent to double-strand cleavage. We attribute the effects of ionic strength on steady-state parameters to nonspecific endonuclease.DNA interactions, reflecting facilitated diffusion processes, that occur prior to EcoRI sequence recognition and subsequent to DNA cleavage.  相似文献   

16.
用脉冲电场凝胶电泳和双标记基因质粒DNA转染技术研究辐射敏感的毛细血管扩张性共济失调症患者皮肤成纤维细胞(AT5BIVA)和正常辐射抗性的人宫颈癌细胞(HeLaS3)DNA双链断裂重接修复率及其忠实性。结果表明γ射线照射诱发DNA双链断裂的产额和重接修复率,在两株细胞间无差别.而AT细胞对导入的限制性内切酶EcoRV产生双链断裂质粒DNA的重接修复忠实性显著低于HelaS3te胞,表明AT细胞易发生DNA错误修复,这很可能就是AT细胞高度辐射敏感性的主要原因。  相似文献   

17.
Genetic competence in Bacillus subtilis.   总被引:61,自引:5,他引:56       下载免费PDF全文
  相似文献   

18.
The structural relationship between the transfer ribonucleic acid (tRNA) and the ribosomal RNA (rRNA) genes of Bacillus subtilis has been studied by restriction endonuclease analysis of total chromosomal deoxyribonucleic acid (DNA) and characterization of DNA fragments cloned in Escherichia coli. The DNA sequences encoding rRNA and tRNA were assayed by hybridization to radioactive RNA. The results support the conclusion that the tRNA genes are interspersed between and closely linked to the rRNA genes of B. subtilis. They probably do not appear between the 16S and 23S rRNA genes as in E. coli.  相似文献   

19.
The efficiency of "LiCl transformation" in Saccharomyces cerevisiae haploid cells by an autonomously replicating pLL12 plasmid carrying yeast LEU2 and LYS2 genes is increased (by an order or more) when the plasmid is linearized by the restriction endonuclease XhoI cleavage of a unique site in LYS2 gene. Transformants were selected on the medium lacking leucine. This phenomenon has been shown to be a result of recombinational repair of double-strand breaks (DSB) of plasmid DNA stimulated by a restriction endonuclease. The kinetic data have shown the process of plasmid DNA DSB repair to consist of two phases. The completion of the first phase occurs during an hour and the second phase occurs in 14-18 hours. DNA double-strand gaps (the deleted sequences of plasmid LYS2 gene in DSB region) with maximal length of 2-2.5 kb are repaired with the same efficiency as DSB. The genetic control of the recombinational repair of plasmid DNA DSB has been studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号