首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

2.
Ten-day old kidney bean plants (Phaseolus vulgaris L. cv. Shin-edogawa)were exposed to 2.0 and 4–0 parts 10–6 NO2, and0.1, 0.2, and 0.4 parts 10–6 O3 alone or in combinationfor 2, 4, and 7 d. The effects of these air pollutants wereexamined with respect to the growth, partitioning of assimilates,nitrogen uptake, soluble sugar content, and root respiration. Decreased dry matter production was significant with all treatmentsexcept 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3.Exposure to mixtures of the gases produced more severe suppressionof growth than exposure to the single gases. Root/shoot ratiowas significantly lowered at 7 d by the gas treatments otherthan 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3. Thetotal nitrogen content of plants was increased by all treatments;the higher percent of nitrogen found with O3 exposure will resultfrom the growth retardation which increases the concentrationof nitrogen in the plants because the absorption of nitrogenby roots was unaffected. The combination of O3 with NO2 significantlydecreased the assimilation of NO2 by the plants. The concentration of soluble sugars in roots was decreased bythe gas treatments. There was a strong positive correlationbetween soluble sugar content and dry weight of the roots harvestedat 7 d. Root respiration was relatively unchanged until 5 dand then decreased significantly at 7 d by 2.0 parts 10–6NO2 and 0–2 parts 10–6 O3. Retarded growth of theroots and the decreased root respiration may be due to diminishedtranslocation of sugars from leaves to roots caused by exposureto air pollutants. The uptake of soil nitrogen was not closelyrelated with root respiration in the case of O3 exposure. Key words: NO2, O3, Phaseolus vulgaris, Growth, Sugars, Root respiration  相似文献   

3.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. in flowing solution culture. I. Growth.—J.exp. Bot. 38: 42–52 Oilseed rape (Brassica napus L. cv. Bien venu) was grown for49 d in flowing nutrient solution at pH 6?0 with root temperaturedecrementally reduced from 20?C to 5?C; and then exposed todifferent root temperatures (3, 5, 7, 9, 11, 13,17 or 25?C)held constant for 14 d. The air temperature was 20/15?C day/nightand nitrogen was supplied automatically to maintain 10 mmolm–3 NH4NO3 in solution. Total dry matter production wasexponential with time and similar at all root temperatures givinga specific growth rate of 0?0784 g g–1 d–1. Partitioningof dry matter was influenced by root temperature; shoot: rootratios increased during treatment at 17?C and 25?C but decreasedafter 5 d at 3?C and 5?C. The ratio of shoot specific growthrate: root specific growth rate increased with the ratio ofwater soluble carbohydrates (shoot: root). Concentrations ofwater soluble carbohydrates in shoot and root were inverselyrelated to root temperature; at 3, 5 and 7?C they increasedin stem + petioles throughout treatment, coinciding with a decreasein the weight of tissue water per unit dry matter. These resultssuggest that the accumulation of soluble carbohydrates at lowtemperature is the result of metabolic imbalance and of osmoticadjustment to water stress. Key words: Brassica napus, oilseed rape, root temperature, specific growth rate  相似文献   

4.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

5.
The linkage between K and the development of storage roots in root crops is partially understood, hence this experiment determined some of the mechanisms involved in cassava. The effects of 10, 40, 70, 100, 150 and 200 mg K l−1 fertigation on photosynthetic attributes, soluble carbohydrates, starch, metabolites, growth and yield were studied in a greenhouse. Storage root yield, number of storage roots, stomatal conductance and net photosynthesis reached maximum at 150 mg K l−1. However, soluble carbohydrates and starch in the leaves significantly declined with an increasing concentration of K solution, similarly to the trend of glycerol in the leaves. Conversely, malic acid, citric acid and propionic acid gradually increased reaching maximum at 150, 150 and 70 mg K l−1 respectively. Combined, these results suggest that sugars were transported from the leaves to a stronger sink – the bulking storage roots. This and the increase of intermediate metabolites of tricarboxylic acid cycle provided the energy required for the bulking process and the development of the storage roots. Although the measured parameters indirectly link K to storage root development, they nonetheless form a basis for studies on direct interactions.  相似文献   

6.
Untransformed and transformed root cultures of Swainsona galegifollawere established for swainsonine production. Transformed rootsgrew faster and produced higher swainsonine levels (62.3 µgg–1 DW) than untransformed roots (23.6 ,µg g–1DW) or roots of intact plants (8.7 µg g–1 DW). Transformationof a number of plant genotypes using A. rhizogenes strain LBA9402 showed that plant genotype Influences swainsonine levelin transformed roots but that a wide range of swainsonine levelscan be induced by separate transformation events in the samegenotype. Enhancement of swainsonine production was attemptedby treatment with sugars and induction of polyploid roots. Key words: Agrobacterium rhizogenes, root cultures, Swainsona galegifolia, swainsonine  相似文献   

7.
A comparison of the activity and properties of the enzyme phosphoenolpyruvatecarboxylase (PEPC) was made for plants of Sedum telephium L.grown under low (70 µmol m–2 s–1) or high(500µmol m–2 s–1) PPFD and subjected to varyingdegrees of water stress. Under well-watered conditions onlyplants grown under high PPFD accumulated titratable acidityovernight and the extractable activity of PEPC was almost 2-foldhigher in these plants than in plants grown under low PPFD.Increasing drought stress resulted in a substantial increasein the activity of PEPC extracted both during the light anddark periods and a decrease in the sensitivity to inhibitionby malic acid. The magnitude of these changes was determinedby the severity and duration of drought and by light intensity.A comparison of the kinetic properties of PEPC from severelydroughted plants revealed that plants droughted under high PPFDhad a lower Km for PEP than plants under low PPFD. Additionof 2·0 mol m–3 malate resulted in an increase inthe Km for PEP, with plants draughted under low PPFD havinga significantly higher Km in the presence of malic acid comparedto those under high PPFD. Response to the activator glc-6-P,which lowered the Km for PEP, also varied between plants grownunder the two light regimes. Under well-watered conditions PEPCextracted from plants under high PPFD was more sensitive toactivation by glc-6-P than those under low PPFD. After the severedrought treatment, however, the Km for PEP in the presence ofglc-6-P was similar for enzyme extracted from plants grown underboth light regimes. Soluble sugars and starch were depletedovernight and were both possible sources of substrate for PEPC.With increasing drought, however, the depletion of starch relativeto soluble sugars increased under both light regimes. The propertiesof PEPC and the characteristics of carbohydrate accumulation/depletionare discussed in relation to the regulation of CAM in S. telephiumgrown under different light and watering regimes. Key words: PEP carboxylase, CAM, carbohydrates, Sedum telephium  相似文献   

8.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

9.
This study investigated the relationship between internal nitrogenand carbohydrate distribution in chrysanthemum cuttings of twocultivars (‘Puma’, ‘Cassa’) when affectedby nitrogen supply to stock plants (0.6, 1.5, or 4.0 g N m-2week-1)and different periods (2, 3, or 4 weeks) of dark cold-storage(0.5 or 5°C), and adventitious rooting. Concentrations oftotal nitrogen (Nt) and nitrate in cuttings and the levels ofsugars, starch and fructan in different cutting parts (leaves,upper stem, and basal stem) were studied in relation to subsequentadventitious rooting at natural radiation in a greenhouse. Increasingnitrogen supply resulted in substantially lower starch levelsand higher sucrose concentrations in leaves when cuttings wereexcised. Fructan concentrations were low and decreased withincreasing nitrogen levels. Starch completely disappeared fromleaves and to a large extent from stems within the shorteststorage period. A less pronounced decrease in sugar concentrationwas observed, particularly in low-nitrogen cuttings and thecuttings of ‘Puma’. The number and length of adventitiousroots subsequently formed by unstored and stored cuttings waspositively correlated with initial Nt, and to a lesser extentwith initial nitrate concentrations in cuttings. Whereas rootingwas not limited by pre-rooting concentrations of carbohydratesin the different cutting parts, the generally higher rootingcapability of nitrogen-rich cuttings, a stronger nitrogen responseof ‘Cassa’, and increased rooting at a particularharvest date, were associated with higher sucrose:starch ratiosin leaves at harvest. This reflected an increased assimilateexport. By using this characteristic in a linear regressionmodel, total variability of root numbers, ranging from three–35per cutting, could be predicted to 57% for the unstored andto 40% for all cuttings. Increased basipetal transport of carbohydrates,of nitrogen compounds, and of auxins may be causally involvedin these associations. Copyright 2000 Annals of Botany Company Adventitious rooting, nitrogen, sugars, carbohydrates, source-sink, partitioning, quality, storage, cuttings, stock plants, chrysanthemum, Dendranthema grandiflorum  相似文献   

10.
An understanding of the proportion of true seedlings, seedling sprouts and root suckers in the forest is essential for directing the genetic composition of the future crop. We conducted a study to determine the difference between these plantlets of Detarium microcarpum based on morphological characters and carbohydrate contents in leaves and roots. For individuals ≤50 cm in height, root suckers had the highest values for height, stem length, internode number, root diameter, rachis length and leaflet number. The concentrations of starch and total nonstructural carbohydrates in the roots of seedling sprouts were superior. Plantlets did not differ in the concentration of leaf carbohydrates. For individuals >50 cm in height, root suckers had larger values for stem length, root diameter, leaflet length and width. Roots of seedling sprouts showed higher concentrations of soluble sugars and total soluble sugars. True seedlings were distinguished from seedling sprouts and root suckers using all morphological traits except collar diameter and leaflet number. Root suckers and seedling sprouts showed a closer morphological resemblance; thus resulted in slightly more than 50% discrimination success. In conclusion, discrimination between seedling sprouts and root suckers appeared to be more difficult than between true seedlings and clonal plantlets.  相似文献   

11.
OLOFINBOBA  M. O. 《Annals of botany》1969,33(2):339-349
The xylem of Antiaris africana contains sucrose, starch, glucose,fructose, maltose, and raffinose. Sucrose and starch are themost abundant carbohydrates. Glucose and fructose occur in relativelyequal amounts while maltose and raffinose are the least abundant.Raffinose disappears from the xylem during the dry season, justbefore leaf fall. The pattern of seasonal variation in the individualsugars and starch is similar. There is generally a peak at leaffall and a depletion of these reserves at new flush. Accumulationof carbohydrates during leaf fall occurs first in the youngestxylem (i.e. the 0–2-cm segment). The youngest xylem alsoaccumulates the greatest amount of reserve sugars and starch.The concentrations of the sugars decrease inwards until theybegin to rise after the 4–6-cm segment. There is, however,no such rise in the concentration of starch. The dry-mattercontents increase inwards from the youngest xylem until theylevel out after the 4–6-cm segment. There is a rapid fallin the sucrose and starch contents of felled A. africana. Sucrosedropped by about 65 per cent and starch by about 73 per centin the first 10 days after felling. The levels of other sugarsdecreased gradually except for glucose and fructose which initiallyrose and then fell. Glucose and maltose could still be detectedon the 68th day after felling.  相似文献   

12.
An analysis of the partitioning of carbohydrates in annual andperennial cotton was made to ascertain the distribution of assimilatesand constitution of reserves. Root/shoot dry matter ratio ishigh in perennial cotton and this plant shows a preferentialaccumulation of dry matter in roots corresponding to its adaptationto drought. Starch content is also higher in perennial cottonroots than in annual. It can be said that the earlier maturingthe cultivar, the lower the root/shoot ratio and the lower thestarch content. Nevertheless, at the whole plant level in annualcotton the starch content is highest in leaves where it is accumulatedbefore migration, and stem wood, and lowest in root and bark.While starch content in roots of annuals declines after 3 months,it is still increasing in perennials. Accumulation of carbohydratesas reserve material can be modified by selection and such selectionis accompanied by an increase in the activities of ß-amylasein exporting organs: leaves, woody tissue of the stem, and barkbut not in roots. Invertase activities were highest in leavesbut did not respond to selection. Non-irrigated cotton had ahigher activity of ß-amylase in leaves and stem woodcorresponding to the mobilization of reserve assimilates. Smallerincreases were observed in the activity of invertase. High yieldingannual cottons show a higher activity of ß-amylaseand invertase in leaves corresponding to a higher capacity ofassimilate transfer. Also a comparison was made from emergenceto 4 months of the partitioning of carbohydrates between leaf,stem and roots in annual and perennial cotton. In conclusionperennial cotton apparently owes its drought resistance to apartitioning of assimilates that favours the growth of the rootsystem and the accumulation of starch reserves in roots. Key words: Gossypium hirsutum L, carbohydrates, partitioning  相似文献   

13.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

14.
Carbon and nitrogen balance in Acorus calamus, a wetland species colonising littoral zones with a high trophic status, was studied under experimental conditions using water or sand culture with a defined composition of the nutrient solution. Influence of graded level of N (1.86, 7.5 and 18.6 mM) and/or forms of N (NH4+ versus NO 3) on the content of non-structural carbohydrates, free amino acids, total C, and total N was studied in Acorus rhizomes and roots to find possible connection with a reduced growth of Acorus plants under high N and NH4+–N nutrition described in our previous study [Vojtíšková et al., 2004. Hydrobiologia 518: 9–22]. High N availability and pure NH4+–N nutrition affected the C/N balance of rhizome and root systems of Acorus in a similar way. NH4+–N was the only form of N elevated under the high N treatment. The major proportion of the total non-structural carbohydrates (TNC) was starch (91–93% and 51–64% in rhizomes and roots, respectively). The content of starch was significantly and and negatively affected by high N availability (P = 0.001), as well as by NH4+–N nutrition (P=0.001). Amounts of simple soluble carbohydrates (sucrose, glucose, and fructose) were negligible in comparison to starch in rhizomes and branched roots (up to 5% of TNC), while roots without developed lateral roots (unbranched) contained up to 33% of TNC in the form of simple soluble sugars. Moreover, high hexoses/sucrose ratio, low starch/soluble sugars ratio, high content of N, and low C/N ratio support the notion that unbranched roots are metabolically active young roots with tissue differentiation in progress. A high content of free amino acids, typically with dominance of N-rich amino acids (Arg-46%, Gln-8%, Asn-7%), was found simultaneously with a low carbohydrate content under high N supply, which indicates that NH4+ received is effectively incorporated into the organic form by this species. Since the decrease in carbohydrate content was not accompanied by luxurious growth, other possible carbon consuming processes were discussed in relation to NH4+ nutrition. More dramatic changes in total N than C were found under high N availability resulting a shift in C/N ratio in favour of N. Although the shift towards N metabolism was obvious, no serious carbohydrate depletion occurred, which could explain the reduced growth of Acorus plants under high N and sole NH4+–N nutrition described previously.  相似文献   

15.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

16.
Rechel  Eric 《Annals of botany》1993,72(2):103-106
Enzymatic hydrolysis of starch in lucerne (Medicago sativa L.)taproots is the conventional method used to determine the quantityof carbohydrates allocated to regrowth. Etiolated growth froma taproot could be used to quantify total root biomass allocatedto regrowth. This study compared concentrations of non-structuralcarbohydrates, as measured by -amylase hydrolysis of starchto glucose, to concentrations of non-structural biomass, asmeasured by etiolated growth from lucerne taproots placed inan incubator and plants in situ. The concentration of starchfrom enzymatically assayed taproots was 325 g kg-1 expressedas glucose equivalents. Etiolated growth and weight loss byrespiration from plants grown in the incubator accounted for524 g of actual biomass per kg of root. There was 46·2g kg-1 of N, 3·1 of P, and 33·1 of K in the etiolatedgrowth. An 88% increase in etiolated growth dry weight was observedfrom plants in situ compared to taproots placed in the incubator.Accurate quantification on non-structural biomass should notbe limited to sampling just the taproot, but must included theentire root system. Compared to determining non-structural carbohydratesby enzymatic hydrolysis of starch, the procedure used in determiningnon-structural biomass by etiolate growth gave results in unitsrelative to the plant. The use of etiolate growth also providedinformation on mineral nutrient partitioning from root to shoots,was less technically demanding, and could be applied to theentire root system.Copyright 1993, 1999 Academic Press Medicago sativa, root carbohydrates, etiolated growth, taproot  相似文献   

17.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

18.
Kouchi, H., Yoneyama, T. and Akao, S. 1986. Compartmental analysisof the partitioning of photo-assimilated carbon in nodulatedsoybean plants during the light period.—J. exp. Bot. 37:994–1005. Dynamics of the partitioning of photo-assimilated carbon invegetative nodulated soybean (Glycine max L.) plants in thelight period was investigated by compartmental analysis basedon data from steady-state 13CO2 assimilation experiments. Themodel assumes a total of 18 compartments consisting of activeand temporary storage pools for soluble materials, starch andstructural materials in leaves, stems plus petioles, roots andnodules together with respired carbon from the roots and nodules.Carbon flow between compartments was described by 22 rate parameters.The rate parameters were evaluated by a non-linear least squaresearch method to optimize the fitness of the simulated resultswith the experimental tracer distribution. The compartment model was well applicable to interpret the carbonpartitioning in whole plants. The analysis showed that: (I)The largest carbon flux during the light period was to storagematerials (starch and temporary storage soluble pools) in theabove-ground parts. The total flux to storage pools was considerablylarger than the transporting flux to below-ground parts. (2)The main carbon flux to the nodules was via direct phloem pathwaysfrom the shoot and not via the compartment of root soluble materials.This flux was 72% of the total carbon flux from the shoot tothe nodulated root system. (3) A large amount of carbon wasreturned to the shoot from below-ground parts. The total returnof carbon flux to the shoot (85% from nodules) was equivalentto 54% of the total influx of carbon to below-ground parts.Direct carbon transfers between roots and nodules were relativelysmall. Key words: Compartmental analysis, carbon partitioning, root nodules, Glycine max L., 13CO2, assimilation  相似文献   

19.
Sorghum plants were grown in the laboratory with the root systemof each plant split between two pots. Three split pot treatmentswere established: (– –) treatment, where both halvesof the root were free from Striga; (– +) treatment, wherethe soil in one half of the pot had been inoculated with Strigaseed; (+ +) treatment, where the soil in both halves of thepot had been inoculated with Striga. Seed, stem and leaf weight were reduced by 82, 60 and 26 percent respectively in (+ +) plants compared to (– –)plants. Partially infected plants (– +) behaved similarlyto (+ +) plants. Rates of light saturating carbon dioxide fixation in (+ +) and(– +) plants were only 60 per cent of those measured in(– –) plants. This reduction was independent ofchanges in stomatal conductance. The effects of Striga on the growth and photosynthesis of sorghumappear to be independent of the degree of parasitism to whichthe host is subjected. The difference in production betweeninfected and uninfected plants was greater than could be accountedfor in term of competition with the parasite for resources,and Striga appears to have a pathological effect on the host. Sorghum, Striga, parasitic angiosperm, growth, photosynthesis  相似文献   

20.
FARRAR  J. F. 《Annals of botany》1981,48(1):53-63
The respiration rate of roots on intact barley plants grownin 16 h light 8 h dark cycles shows an exponential decay inthe dark, rises on re-illumination and there is a transientfall 12–14 h into the photoperiod Roots of plants placedin the dark for up to 48 h show a continued exponential decay,and a rather small fall in soluble carbohydrate levels The respirationof roots excised from predarkened plants does not rise on additionof sucrose to the medium bathing them Respiration rate, measured10 h into the photoperiod, shows a constant relation to rootweight in plants 8–24 days old, during which time rootcarbohydrate content first falls and later rises It is concludedthat root respiration rate is not a simple function of carbohydratesupply from the shoot The importance of root respiration inthe carbon budget of barley plants is evaluated and the levelsof control operating on root respiration rate are briefly discussed Hordeum distichum (L ) Lam, barley, respiration rate, light, carbohydrate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号