首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.  相似文献   

4.
The effects of varied rooting volumes on root growth and source leaf carbohydrate metabolism were studied in greenhouse-grown cucumber (Cucumis sativus L cv Calypso) plants. Plants were grown for 7 weeks in container volumes that ranged from 0.4 to 5.9 liters. Plants grown in the smaller containers exhibited less leaf expansion, lower root and shoot weight, and fewer lateral stems than plants grown in the 5.9 liter containers. Shoot/root ratio was not altered by the container volume, suggesting coordination of root and shoot growth due to rooting volume. Source leaf carbon exchange rates, assimilate export rates, and starch accumulation rates for plants grown in 0.4 liter containers were approximately one-half or less in comparison to those for plants grown in 5.9 liter containers. Starch concentrations per unit leaf area were maintained at high levels in source leaves of plants grown in 0.4 liter containers over the entire day/night cycle. Lower extractable galactinol synthase activities and higher galactinol concentrations occurred in leaves of plants grown in 0.4 liter container volumes. The reduced sink demand, induced by restricted root growth, may have led to increased starch concentrations and to a reduction in stachyose biosynthesis in cucumber source leaves.  相似文献   

5.
6.
To investigate root respiration and carbohydrate status in relationto waterlogging or hypoxia tolerance, root respiration rateand concentrations of soluble sugars in leaves and roots weredetermined for two wheat (Triticum aestivum L.) genotypes differingin waterlogging-tolerance under hypoxia (5% O2) and subsequentresumption of full aeration. Root and shoot growth were reducedby hypoxia to a larger extent for waterlogging-sensitive Coker9835. Root respiration or oxygen consumption rate declined withhypoxia, but recovered after 7 d of resumption of aeration.Respiration rate was greater for sensitive Coker 9835 than fortolerant Jackson within 8 d after hypoxia. The concentrationsof sucrose, glucose and fructose decreased in leaves for bothgenotypes under hypoxia. The concentration of these sugars inroots, however, increased under hypoxia, to a greater degreefor Jackson. An increase in the ratio of root sugar concentrationto shoot sugar concentration was found for Jackson under hypoxicconditions, suggesting that a large amount of carbohydrate waspartitioned to roots under hypoxia. The results indicated thatroot carbohydrate supply was not a limiting factor for rootgrowth and respiration under hypoxia. Plant tolerance to waterloggingof hypoxia appeared to be associated with low root respirationor oxygen consumption rate and high sugar accumulation underhypoxic conditions.Copyright 1995, 1999 Academic Press Oxygen consumption rate, sugar accumulation, Triticum aestivum L., waterlogging tolerance  相似文献   

7.
In the search for early-detectable selection criteria for growthat low temperature conditions in tomato, first the initiationand growth of individual leaves was analysed. Scanning electronmicroscopy revealed that the first four primordia had alreadydeveloped during the germination period at 25°C. The primordiumof the fifth leaf, however, was initiated after the transferof seedlings to the experimental conditions. The increase inlength of the first three leaves, and to a lesser extent ofthe fourth leaf, was considerably smaller in comparison withthat of later formed leaves. Moreover, the morphology of thefirst three to four leaves was deviant, whereas the others showedthe normal compound leaf architecture. All these results indicatedthat the fifth leaf was the earliest formed leaf with growthcharacteristics that might reflect the growth potential of thewhole plant. Development of the fifth leaf was tested as a marker for wholeplant growth. At three temperature, 18, 15 and 12°C, growthresponses of the fifth leaf were similar to that of whole plantsin four tomato genotypes: Line A, Line B, Premier and MXXIV-13.Significant differences in relative growth rate of dry weightof whole plants and fifth leaves (RGRW)and of leaf area of thefifth leaves (RGRLA between two fast growing and two slow growinggenotypes were found. No genotype by temperature interactionfor RGRW and RGRLA was found, indicating that the effect oftemperature decrease was similar for the four genotypes. The structure of the mature fifth leaf of one fast and one slowgrowing genotype, Line A and MXXIV-13, was analysed. For bothgenotypes, leaves were small and thick at low temperature, 12°C.The total number of epidermis and palisade parenchyma cellsper leaf was smaller but the size of the cells developed at12°C was larger than at 18°C. Consequently, the slowgrowth at 12°C was due to a low rate of cell division. Atboth temperatures, the fifth leaf to MXXIV-13 was smaller comparedto that of line A. Since the size of the cells were similar,the smaller leaf size was due to lower number of leaf cells. The results confirm the suitability of the growth, especiallyexpressed as RGRLA , of the fifth leaf as a nondestructive marketfor vegetative development of tomato at low temperature. Growthdifferences between genotypes were mainly reflected by differencesin cell number of leaves, which might be correlated with geneticallydetermined differences in cell number of leaf primordia.Copyright1993, 1999 Academic Press Lycopersicon esculentum Mill. genotypes, plant growth, selection criteria, low temperature, leaf initiation, leaf development, RGR, leaf structure, cell expansion  相似文献   

8.
9.
10.
11.
以国内4个大蒜栽培品种为材料,建立了以根为外植体的再生体系。将蒜瓣去皮后灭菌消毒,萌发后选取苗龄为5~7 d的无菌苗的根接种到含不同激素配比的培养基中进行愈伤组织诱导,发现MS+2,4-D 1 mg/L+2ip 0.1 mg/L组合愈伤诱导效率最高,平均为56.06%;愈伤组织经过2~3次继代培养,选取胚性愈伤组织置于不同分化培养基上进行培养,2~3个月后可见小芽产生,分化培养基为MS+KT 1 mg/L时,植株再生效率最高,平均达到35.01 %。本研究建立了一种以根为外植体的高效的大蒜愈伤诱导和再生体系,为大蒜遗传转化体系的建立打下良好基础。  相似文献   

12.
The biochemical consequences of root hypoxia have been documented in many sink organs, but not extensively in fruit. Therefore, in the present study, the response to root hypoxia in tomato fruit (Solanum lycopersicum L.) was investigated at two developmental stages, during the cell division and the cell expansion phases. Our results showed that in dividing fruit, root hypoxia caused an exhaustion of carbon reserves and proteins. However, ammonium and major amino acids (glutamine, asparagine and γ–aminobutyric acid (GABA)) significantly accumulated. In expanding fruit, root hypoxia had no effect on soluble sugar, protein and glutamine contents, whereas starch content was significantly decreased, and asparagine and GABA contents slightly increased. Metabolite contents were well correlated with activities of the corresponding metabolising enzymes. Contrary to nitrogen metabolising enzymes (glutamine synthetase, asparagine synthetase and glutamate decraboxylase), the activities of enzymes involved in sugar metabolism (invertase, sucrose synthase, sucrose phosphate synthase and ADP glucose pyrophosphorylase) were significantly reduced by root hypoxia, in diving fruit. In expanding fruit, only a slight decrease in ADP glucose pyrophosphorylase and an increase in asparagine synthetase and glutamate decarboxylase activities were observed. Taken together, the present data revealed that the effects of root hypoxia are more pronounced in the youngest fruits as it is probably controlled by the relative sink strength of the fruit and by the global disturbance in plant functioning.  相似文献   

13.
Many plant-associated bacteria synthesize the phytohormone indoleacetic acid (IAA). While IAA produced by phytopathogenic bacteria, mainly by the indoleacetamide pathway, has been implicated in the induction of plant tumors, it is not clear whether IAA synthesized by beneficial bacteria, usually via the indolepyruvic acid pathway, is involved in plant growth promotion. To determine whether bacterial IAA enhances root development in host plants, the ipdc gene that encodes indolepyruvate decarboxylase, a key enzyme in the indolepyruvic acid pathway, was isolated from the plant growth-promoting bacterium Pseudomonas putida GR12-2 and an IAA-deficient mutant constructed by insertional mutagenesis. The canola seedling primary roots from seeds treated with wild-type P. putida GR12-2 were on average 35 to 50% longer than the roots from seeds treated with the IAA-deficient mutant and the roots from uninoculated seeds. In addition, exposing mung bean cuttings to high levels of IAA by soaking them in a suspension of the wild-type strain stimulated the formation of many, very small, adventitious roots. Formation of fewer roots was stimulated by treatment with the IAA-deficient mutant. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.  相似文献   

14.
Phosphoglucomutase (PGM) catalyses the interconversion of glucose 1-phosphate (G1P) and glucose 6-phosphate (G6P) and exists as plastidial (pPGM) and cytosolic (cPGM) isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3) exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.  相似文献   

15.
马龙  李桂林  李师鹏  蒋苏 《植物学报》2020,55(5):596-604
整体透明观察技术是植物形态发育研究的基础手段之一, 是无需制作切片直接观察植物体内部形态结构的有效方法。该技术采用高折射率介质降低光在样品中的散射, 提高光通量, 增加视野深度, 从而实现组织样品透明观察。然而透明剂能改变透明液的渗透势和pH值, 从而对细胞形态保持产生负面影响。目前, 针对植物叶片和胚珠已建立了相对成熟的整体透明观察体系, 但根尖由于细胞壁较薄, 现有的整体透明方法常导致细胞形态改变, 不确定性增加(如根尖整体形态改变和细胞发生严重的质壁分离)。该研究以拟南芥(Arabidopsis thaliana)幼苗为实验材料, 通过检测根尖形态、细胞质壁分离情况和细胞清晰度, 对常用的透明液组分、pH值和透明时间进行优化, 旨在建立一种适用于根尖等较脆弱组织材料的整体透明方法。  相似文献   

16.
Background: As seed dispersal can vary among years and individuals, studies that focus on a single year or on a few individuals may lead to erroneous conclusions.

Aims: To study temporal and spatial intraspecific variation of seed dispersal in Scrophularia canina, a widespread species with capsule-type fruit.

Methods: Primary seed dispersal was quantified by placing traps in each cardinal direction around 10 individuals during two consecutive years. We correlated several seed shadow parameters (modal dispersal distance, kurtosis, skewness, percentiles, slope, and seed percentage beneath the plant canopy) with three plant features (maximum height, lateral spread and seed production).

Results: Scrophularia canina dispersed their seeds by boleochory, giving rise to a typical leptokurtic curve, but behaving as a barochorous species, because about 90% of seeds landed beneath the plant canopy. Temporal dispersal in S. canina included several seed waves associated with maximum wind speeds. Plant lateral spread was significantly positively correlated with seed percentiles and percentage of seeds beneath the plant canopy regardless of year. A seed production effect was only evident when both years were considered together.

Conclusions: Although time-consuming, investigation of the dispersal process for more than 1 year provides more realistic information on seed dispersal. Lateral spread is the main plant feature determining seed shadow.  相似文献   

17.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

18.
植物侧根发育的研究进展   总被引:2,自引:0,他引:2  
侧根是植物根系的重要组成部分,其发生和发育受到内源植物激素和外界环境因素的共同影响。生长素在侧根发生起始、侧根原基的发育和侧根突破母体表皮等阶段均发挥关键作用。研究侧根的发育和形态解剖结构以及信号调控途径等,都具有重要的理论和实践意义。本文结合近年来的研究进展,综述了拟南芥和水稻侧根发育的详细过程和影响因素,重点关注生长素在侧根原基发生和发育过程中的作用。  相似文献   

19.
Wind disturbance as a green method can effectively prevent the overgrowth of tomato seedlings, and its mechanism may be related to root system mechanics. This study characterized the biophysical mechanical properties of taproot and lateral roots of tomato seedlings at five seedling ages and seedling substrates with three different moisture content. The corresponding root system-substrate finite element (FE) model was then developed and validated. The study showed that seedling age significantly affected the biomechanical properties of the taproot and lateral roots of the seedlings and that moisture content significantly affected the biomechanical properties of the seedling substrate (p < 0.05). The established FE model was sensitive to wind speed, substrate moisture content, strong seedling index, and seedling age and was robust. The multiple linear regression equations obtained could predict the maximum stress and strain of the root system of tomato seedlings in the wind field. The strong seedling index had the greatest impact on the biomechanical response of the seedling root system during wind disturbance, followed by wind speed. In contrast, seedling age had no significant effect on the biomechanical response of the root system during wind disturbance. In the simulation, no mechanical damage was observed on the tissue of the seedling root system, but there were some strain behaviors. Based on the plant stress resistance, wind disturbance may affect the growth and development of the root system in the later growth stage. In this study, finite element and statistical analysis methods were combined to provide an effective approach for in-depth analysis of the biomechanical mechanisms of wind disturbances that inhibit tomato seedlings’ growth from the root system’s perspective.  相似文献   

20.
Carbohydrate Availability in Relation to Fruitlet Abscission in Citrus   总被引:1,自引:1,他引:1  
Abscission of flowers and fruitlets in the Washington navelorange (Citrus sinensis [L.] Osbeck) has been characterizedin relation to carbohydrate availability. A main wave of flowerabscission occurs shortly after anthesis while the carbohydratereserves in the tree are high. Fruitlet abscission starts approx.30 d after the commencement of flowering, while carbohydrates(mainly starch) are being accumulated in the leaves. Flowerand early fruitlet abscission are not caused by carbohydrateshortage. During late fruitlet abscission sucrose concentrationin the leaves falls to a low value demonstrating a limitationin supply and competition among the developing fruitlets forcarbohydrates. Concentrations of sucrose and reducing sugarsin the peel of the fruitlets also fall to low values, and arelationship could be demonstrated between these free sugarlevels and abscission. Ringing increases carbohydrate supplyto fruit and reduces late fruitlet abscission, but only hasa marginal effect on the growth of the fruitlets, which seemsless sensitive than abscission to carbohydrate shortage. Thelimitation of carbohydrate supply to the fruitlets occurs whilestarch levels in the leaves remain high. Slow mobilization ofstarch reserves may be one factor limiting set in Citrus. Copyright2001 Annals of Botany Company Carbohydrate supply, citrus, fruit growth and abscission, ringing, navel orange, starch, sugar metabolism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号