首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
One of the possible pathways of the formation of mutagens in heated foods is through the pyrazine cation radical generated in the early stage of the Maillard reaction. The aim of the present study was to elucidate how food reductones contribute to the pyrazine cation radical generation in the reaction of glucose (Glc) and glycine (Gly), and to the formation of the mutagens in the reaction of Glc, Gly and creatinine. Electron spin resonance (ESR) studies showed that fragrant reductones, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), generated in the Maillard reactions, enhanced the generation of the pyrazine cation radical in the reaction of Glc and Gly, and the reaction of DMHF or HEMF with Gly generated a larger amount of the pyrazine cation radical than the reaction of Glc and Gly, indicating that the furanones were intermediates of the pyrazine cation radical. By contrast, food antioxidants, ascorbic acid and erythorbic acid, effectively scavenged the pyrazine cation radical generated in the reaction of Glc and Gly. DMHF and HEMF were not effective to modulate the mutagen formation in the reaction of Glc, Gly and creatinine, and the mutagenicity produced in the reaction of DMHF or HEMF, Gly and creatinine was lower than that produced in the reaction of Glc, Gly and creatinine. On the other hand, ascorbic acid and erythorbic acid were effective to decrease the mutagen formation in the reaction of Glc, Gly and creatinine.  相似文献   

2.
Heme-catalyzed decomposition of unsaturated hydroperoxy fatty acids has been proposed to proceed via carbon-centered free radicals (delocalized at positions C11, C12, and C13 for 15-hydroperoxy-eicosatetraenoic acid (15-HPETE). The stable products are usually epoxy fatty acids and epoxy alcohols. Hydroperoxides from arachidonic acid can decompose via this mechanism to form leukotrienes of potential biological significance and can catalyze the epoxidation of proximal carcinogens to ultimate carcinogenic metabolites. We have used electron spin resonance spin-trapping techniques to detect carbon-centered radicals formed by heme- or ram seminal vesicle-catalyzed decomposition of 15-HPETE. For both systems we detect both a short- and a long-lived radical adduct. We proposed that these radical adducts are derived from C11 and C13 carbon-centered free radicals generated in the decomposition of 15-HPETE.  相似文献   

3.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

4.
The oxidation of N-substituted aromatic amines by horseradish peroxidase   总被引:1,自引:0,他引:1  
The mechanism of N-dealkylation by peroxidases of the Ca2+ indicator quin2 and analogs was investigated and compared with the mechanism of N-dealkylation of some N-methyl-substituted aromatic amines. Nitrogen-centered cation radicals were detected by ESR spectroscopy for all the compounds studied. Further oxidation of the nitrogen-centered cation radicals, however, was dependent upon the structure of the radical formed. In the case of quin2 and analogs, a carbon-centered radical could be detected using the spin trap 5,5-dimethyl-1-pyrroline N-oxide. By using the spin trap 2-methyl-2-nitrosopropane (tert-nitrosobutane), it was determined that the carbon-centered radical was formed due to loss of a carboxylic acid group. This indicated that bond breakage most likely occurred through a rearrangement reaction. Furthermore, extensive oxygen consumption was detected, which was in agreement with the formation of carbon-centered radicals, as they avidly react with molecular oxygen. Thus, reaction of the carbon-centered radical with oxygen most likely led to the formation of a peroxyl radical. The peroxyl radical decomposed into superoxide that was spin trapped by 5,5-dimethyl-1-pyrroline N-oxide and an unstable iminium cation. The iminium cation would subsequently hydrolyze to the monomethyl amine and formaldehyde. In the case of N-methyl-substituted aromatic amines, carbon-centered radicals were not detected during the peroxidase-catalyzed oxidation of these compounds. Thus, rearrangement of the nitrogen-centered radical did not occur. Furthermore, little or no oxygen consumption was detected, whereas formaldehyde was formed in all cases. These results indicated that the N-methyl-substituted amines were oxidized by a mechanism different from the mechanism found for quin2 and analogs.  相似文献   

5.
The spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide of free radicals formed from Bacillus-Calmette-Guerin elicited peritoneal macrophages stimulated with phorbol myristate acetate resulted in the formation of a superoxide and hydroxyl spin adducts. The formation of both spin adducts was inhibited by copper/zinc superoxide dismutase. Only 70% of the hydroxyl spin adduct could be inhibited by catalase or the scavenger dimethyl sulfoxide. This suggests that the production of hydroxyl radicals involves prior formation of both superoxide radicals and hydrogen peroxide, implicating a Fenton catalysed Haber-Weiss reaction. The metal scavenger desferrioxamine also reduced the hydroxyl radical signal by 70%. The unaccounted 30% hydroxyl radical-like signals are probably due to carbon-centered free radicals formed by the lipoxygenase reaction. Spin trapping in the presence of the lipid-soluble spin trap, 5-octadecyl-5,3,3-trimethyl-1-pyrroline-N-oxide, resulted in a spectrum consistent with the presence of an oxaziridine nitroxide. This results from the free radical-induced cyclisation of a nitrone with an unsaturated fatty acid.  相似文献   

6.
We report in vivo evidence for fatty acid-derived free radical metabolite formation in bile of rats dosed with spin traps and oxidized polyunsaturated fatty acids (PUFA). When rats were dosed with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and oxidized PUFA, the DMPO thiyl radical adduct was formed due to a reaction between oxidized PUFA and/or its metabolites with biliary glutathione. In vitro experiments were performed to determine the conditions necessary for the elimination of radical adduct formation by ex vivo reactions. Fatty acid-derived radical adducts of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) were detected in vivo in bile samples collected into a mixture of iodoacetamide, desferrioxamine, and glutathione peroxidase. Upon the administration of oxidized 13C-algal fatty acids and 4-POBN, the EPR spectrum of the radical adducts present in the bile exhibited hyperfine couplings due to 13C. Our data demonstrate that the carbon-centered radical adducts observed in in vivo experiments are unequivocally derived from oxidized PUFA. This in vivo evidence for PUFA-derived free radical formation supports the proposal that processes involving free radicals may be the molecular basis for the previously described cytotoxicity of dietary oxidized PUFA.  相似文献   

7.
The lipase-catalyzed preparation of acyl thioesters from unsaturated fatty acids and alkanethiols is accompanied by the formation of geometrical isomers via stereomutation and of thioether derivatives via addition at the olefinic bond, both induced by thiyl radicals. Therefore, a method was developed in order to inhibit radical generation by the addition of antioxidants and thus prevent the formation of geometrical isomers and thioether derivatives during the lipase-catalyzed preparation of unsaturated acyl thioesters. In the presence of antioxidants such as 2,6-di-t-butyl-4-methylphenol (BHT) and octyl gallate thioesterification of oleic and elaidic acids with 1-tetradecanethiol as well as transthioesterification of methyl linoleate with 1-tetradecanethiol led to the corresponding geometrically uniform thioesters without radical-induced side reactions. In the absence of antioxidants rapid stereomutation of unsaturated acyl moieties as well as formation of high proportions of thiyl radical-induced addition products such as isomeric 9(10)-S-tetradecyl stearic acids and 9(10)-S-tetradecyl stearic acid tetradecyl thioesters were observed.  相似文献   

8.
With the combined techniques of on-line liquid chromatography/electron spin resonance (LC/ESR) and on-line liquid chromatography/mass spectrometry (LC/MS), we have previously characterized all classes of lipid-derived carbon-centered radicals (*Ld) formed from omega-6 polyunsaturated fatty acids (PUFAs: linoleic acid and arachidonic acid). In the present study, the carbon-centered radicals formed from two omega-3 PUFAs (linolenic acid and docosahexaenoic acid) resulting from their reactions with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butylnitrone (POBN) were investigated using the combination of LC/ESR and LC/MS techniques. A total of 16 POBN trapped carbon-centered radicals formed from the peroxidation of linolenic acid and 11 formed from the peroxidation of docosahexaenoic acid were detected by LC/ESR, identified by LC/MS, and structurally confirmed by tandem mass analysis (MS/MS). The on-line ESR chromatograms and MS chromatograms obtained from two omega-3 PUFAs closely resembled each other not only because the four major beta-scission products, including an ethyl radical and three isomeric pentenyl radicals, were formed from each PUFA, but also because isomeric POBN adducts of lipid dihydroxyallylic radicals from both PUFAs had almost identical chromatographic retention times.  相似文献   

9.
Mechanism(s) involved in meat mutagen formation and inhibition.   总被引:1,自引:0,他引:1  
The Maillard reaction, which involves Amadori rearrangement as a key step, also results in sugar fragmentation and free radical formation. The imidazoquinoline meat mutagens (2-amino-3-methylimidazo[4,5-f]-quinoline, or IQ, and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, or MeIQ) are formed from a reaction mixture containing alkylpyridine free radicals and creatinine. The imidazoquinoxaline meat mutagens (2-amino-3,4-dimethylimidazo[4,5-f]-quinoxaline, or MeIQx, and 2-amino-3,4,8-trimethylimidazo[4,5-f]-quinoxaline, or 4,8-DiMeIQx) may be produced by reacting a mixture containing dialkylpyrazine free radicals and creatinine. Two different pathways for free radical formation are proposed. One involves bimolecular ring formation from the enaminol form of the glycoaldehyde alkylimine and is followed by oxidative formation of the free radical. The other pathway involves formation of N,N1-dialkylpyrazinium ions from glyoxal monoalkylimine followed by reduction to produce the free radicals. The respective intermediates (glycoaldehyde alkylimine and glyoxal monoalkylamine) are formed by reacting glycoaldehyde and glyoxal with amino compounds. The glycoaldehyde system reacts faster and produces more free radicals than the glyoxal system. The reactions help to explain the formation of imidazoquinoxaline meat mutagens and their predominance in fried fish and why these mutagens are present in larger quantities in fried ground beef than the imidazoquinoline-type meat mutagens. These two pathways may not be the only mechanisms involved in formation of meat mutagens, but other free radical reactions may also contribute to meat mutagenicity and are mentioned briefly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

11.
A new class of low molecular weight, aminomethylimidazol-4-one (IQ-"like") mutagens have been produced by the reaction of creatinine with the amino acid L-threonine, in liquid-reflux models, mimicking cooking, of diethylene glycol:5% distilled water (2 h at 150 degrees C). Two mutagens, 2-amino-1-methyl-5-propylideneimidazol-4-one (AMPI) and 2-amino-5-ethylidene-1-methylimidazol-4-one (AEMI) were isolated and characterized by UV absorption spectra, mass spectra, and 1H-NMR. The mutagen AEMI was identical to that obtained from the reaction of creatinine with acetaldehyde. These mutagens were positive in all IQ-sensitive Ames tester strains and were not inactivated by acidic nitrosation at pH 1.0. Products displaying mutagenicity were also obtained by refluxing creatinine with other hydroxyamino acids such as L-serine, L-homoserine, and L-4-amino-3-hydroxybutyric acid, and aldehydes such as glyoxal, methylglyoxal, glycolaldehyde, but not formaldehyde. Simple model systems such as creatinine and acetaldehyde may be useful in more clearly defining the exact mechanism of formation of IQ-type mutagens (aminomethylimidazo-quinolines and -quinoxalines) produced during cooking, as well as in screening for potential inhibitors of IQ-type mutagen formation, and elucidating the mechanism of such inhibition.  相似文献   

12.
Electron spin resonance spin-trapping techniques were used to investigate the in vitro and in vivo formation of free radicals during 3-methylindole (3MI) metabolism by goat lung. Utilizing the spin trap phenyl-t-butylnitrone, a nitrogen-centered free radical was detected 3 min after the addition of 3MI to an in vitro incubation system containing goat lung microsomes in the presence of NADPH and O2. The spectrum of the spin adduct was identical to that observed when 3MI was irradiated with ultraviolet light. A carbon-centered radical was also observed which increased in concentration with increasing incubation time. Microsomal incubations containing ferrous sulfate in the absence of 3MI to initiate lipid peroxidation produced the same carbon-centered free radical as obtained by spin-trapping. Malondialdehyde, and end product of lipid peroxidation, was also found to increase in concentration with increasing incubation time of 3MI. The concept that 3MI causes lipid peroxidation in the lung was supported by the in vivo study in which a carbon-centered radical was spin-trapped by phenyl-t-butylnitrone in lungs of intact goats infused with 3MI. This carbon-centered radical had hyperfine splitting constants identical to those carbon-centered free radicals trapped in in vitro incubations of 3MI. These data demonstrate that microsomal metabolism of 3MI produces a nitrogen-centered radical from 3MI which initiates lipid peroxidation in vitro and in vivo causing the formation of carbon-centered radicals from microsomal membranes.  相似文献   

13.
Docosapentaenoic acid (DPA) is a unique fatty acid that exists in two isomeric forms (n-3 and n-6), which differ in their physiological behaviors. DPA can undergo free radical-mediated peroxidation via lipoxygenase (LOX). 15-LOX, one of the LOX isomers, has received much attention in cancer research because of its very different expression level in normal tissues compared to tumors and some bioactive fatty acid metabolites modulating the tumorigenic pathways in cancer. However, the mechanism linking 15-LOX, DPA metabolites, and their bioactivities is still unclear, and the free radicals generated in DPA peroxidation have never been characterized. In this study, we have studied radicals formed from both soybean and human cellular (PC3-15LOS cells) 15-LOX-catalyzed peroxidation of DPAs at various pH's using a combination of LC/ESR/MS with the spin trapping technique. We observed a total of three carbon-centered radicals formed in 15-LOX-DPA (n-3) stemming from its 7-, 17-, and 20-hydroperoxides, whereas only one formed from 17-hydroperoxide in DPA (n-6). A change in the reaction pH from 8.5 (15-LOX enzyme optimum) to 7.4 (physiological) and to 6.5 (tumor, acidic) not only decreased the total radical formation but also altered the preferred site of oxygenation. This pH-dependent alteration of radical formation and oxygenation pattern may have significant implications and provide a basis for our ongoing investigations of LOXs as well as fatty acids in cancer biology.  相似文献   

14.
The spin trapping ESR technique was applied to investigate oxygen-derived radicals in ischemic and post-ischemic rat hearts. Using 5,5'-dimethyl-l-pyrroline-N-oxide, carbon-centered radicals were identified during ischemia and oxy-radical adducts (superoxide anion radical, O.-2 and hydroxyl radicals, .OH) in post-ischemic rat heart. The formation of these spin adducts was inhibited by superoxide dismutase, suggesting that superoxide plays a role in the adducts' formation. The results demonstrate that oxygen derived free radicals are important byproducts of abnormal oxidative metabolism during myocardial ischemic and reperfusion injuries.  相似文献   

15.
Free radical intermediates were detected by the electron paramagnetic resonance spin trapping technique upon protonation/deprotonation reactions of carotenoid and beta-ionone radical ions. The hyperfine coupling constants of their spin adducts obtained by spectral simulation indicate that carbon-centered radicals were trapped. The formation of these species was shown to be a result of chemical oxidation of neutral compounds by Fe(3+) or I(2) followed by deprotonation of the corresponding radical cations or addition of nucleophilic agents to them. Bulk electrolysis reduction of beta-ionone and carotenoids also leads to the formation of free radicals via protonation of the radical anions. Two different spin adducts were detected in the reaction of carotenoid polyenes with piperidine in the presence of 2-methyl-2-nitroso-propane (MNP). One is attributable to piperidine radicals (C(5)H(10)N*) trapped by MNP and the other was identified as trapped neutral carotenoid (beta-ionone) radical produced via protonation of the radical anion. Formation of these radical anions was confirmed by ultraviolet-visible spectroscopy. It was found that the ability of carotenoid radical anions/cations to produce neutral radicals via protonation/deprotonation is more pronounced for unsymmetrical carotenoids with terminal electron-withdrawing groups. This effect was confirmed by the radical cation deprotonation energy (H(D)) estimated by semiempirical calculations. The results indicate that the ability of carotenoid radical cations to deprotonate decreases in the sequence: beta-ionone > unsymmetrical carotenoids > symmetrical carotenoids. The minimum H(D) values were obtained for proton abstraction from the C(4) atom and the C(5)-methyl group of the cyclohexene ring. It was assumed that deprotonation reaction occurs preferentially at these positions.  相似文献   

16.
《Free radical research》2013,47(3-6):315-324
Studies using free radical scavengers and measurements of lipid peroxidation have suggested that free radicals are generated during endotoxemia. Conclusions from these studies have implied that free radicals may participate in the sequence of pathologic events following endotoxin challenge in the experimental animal. Current inferences of free radical generation and involvement have been derived from indirect evidence and are therefore inconclusive. To quantitate the generation of free radicals in vivo during endotoxemia this study employed the use of electron paramagnetic resonance spectroscopy (EPR) combined with spin trapping techniques. Five minutes before intraperitoneal endotoxin administration, trimethoxy-a-phenyl-t-butyl-nitrone [(MeO), PBN] was administered intraperitoneally. Experimental animals were always matched with control animals receiving no endotoxin. At either five minutes or twenty-five minutes following endotoxin administration animals were decapitated and hearts and livers were rapidly taken for lipid extraction and EPR evaluation. Analysis of the EPR spectra revealed hyperfine splitting constants that indicated the presence of carbon-centered radical spin adducts in both organ tissues from animals exposed to endotoxin for twenty-five minutes. No signals were present in hearts and livers taken five minutes after endotoxin administration. EPR evaluation did not indicate spin adduct formation in control tissue. These data directly demonstrate that activation of processes in vivo involving free radical generation occur early during endotoxemia, but are not detectable immediately after the endotoxin challenge.  相似文献   

17.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

18.
Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation.  相似文献   

19.
Aerobic incubations of the Tritrichomonas foetus hydrogenosomal fraction containing pyruvate, CoA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) gave spectra of two radical adducts. One was a carbon-centered radical adduct of DMPO. This radical was centered at C-3 of pyruvate as determined in experiments using [13C]pyruvate. The other radical detected was identified as the CoA radical adduct of DMPO by comparison with an adduct obtained by incubating CoA with DMPO, H2O2 and horseradish peroxidase. Deletion of CoA led to an increased stability of the carbon-centered radical adduct of DMPO, disappearance of the thiyl radical adduct of DMPO, and appearance of a hydroxyl radical adduct of DMPO. Superoxide dismutase suppressed the appearance of the DMPO-hydroxyl radical adduct but did not have any inhibitory effect on the appearance of the other adducts. Catalase had no significant effect on any of the adducts. Addition of pyruvate to these hydrogenosomal preparations stimulated oxygen consumption. Addition of CoA led to a further increase in the rate of O2 uptake but had no effect in the absence of pyruvate. The formation of two substrate free radicals as intermediates in the generation of acetyl-CoA represents a novel mechanism for this enzymatic reaction and indicates that the pyruvate:ferredoxin oxidoreductase from T. foetus differs significantly from the pyridine nucleotide-dependent pyruvate dehydrogenase complex of other eukaryotic cells in its catalytic mechanism.  相似文献   

20.
2-Methyl-2-nitrosopropane (tNB)-radical adducts from incubation mixtures of fatty acids and soybean lipoxygenase in borate buffer (pH 9.0) were measured by electron paramagnetic resonance (EPR). In addition to the previously reported six-line signal of secondary carbon-centered radicals (RCHR'), a weak signal submerged in the baseline was detected after the peroxidation phase was finished. We propose that this radical is a decomposition product formed via beta-scission of fatty acid alkoxyl radicals. EPR spectra of tNB-radical adducts formed in mixtures of either linoleic acid, arachidonic acid, or 15-hydroperoxyeicosatetraenoic acid with lipoxygenase exhibited hyperfine structure characteristic of tNB/.CH2CH2-R with hyperfine coupling constants: aN = 17.1 G; aH beta = 11.2 G (2H); and aH gamma = 0.6 G (2H). In the case of linolenic acid, this radical tNB/.CH=CH-R' with hyperfine coupling constants: aN = 17.1 G; aH beta = 10.9 G (2H); aH gamma = 1.1 G; and aH delta = 0.5 G. In accord with the decomposition scheme of hydroperoxides derived from unsaturated fatty acids, the radical adducts tNB/.CH2CH2-R and tNB/.CH2-CH=CH-R' were assigned as the pentyl and 2-pentenyl radicals, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号