首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马铃薯AGPase大小亚基功能研究   总被引:2,自引:1,他引:1  
马铃薯 1,6 二磷酸腺苷葡萄糖焦磷酸化酶 (AGPase)是淀粉合成的限速酶 ,该酶有大、小两个亚基形成异源四聚体。总结了迄今为止已克隆的马铃薯AGPase大、小亚基编码基因、小亚基和底物结合位点的识别、以及大亚基异构调控因子结合位点识别的研究结果 ,提出了大小亚基非自然重组是深入研究AGPase的途径 ,建立体内条件下高效可靠代谢调控研究手段是AGPase研究所必需的。  相似文献   

2.
ADP-glucose pyrophosphorylase catalyzes the first and limiting step in starch biosynthesis and is allosterically regulated by the levels of 3-phosphoglycerate and phosphate in plants. ADP-glucose pyrophosphorylases from plants are heterotetramers composed of two types of subunits (small and large). In this study, the six Arabidopsis thaliana genes coding for ADP-glucose pyrophosphorylase isoforms (two small and four large subunits) have been cloned and expressed in an Escherichia coli mutant deficient in ADP-glucose pyrophosphorylase activity. The co-expression of the small subunit APS1 with the different Arabidopsis large subunits (APL1, APL2, APL3, and APL4) resulted in heterotetramers with different regulatory and kinetic properties. Heterotetramers composed of APS1 and APL1 showed the highest sensitivity to the allosteric effectors as well as the highest apparent affinity for the substrates (glucose-1-phosphate and ATP), whereas heterotetramers formed by APS1 and APL2 showed the lower response to allosteric effectors and the lower affinity for the substrates. No activity was detected for the second gene coding for a small subunit isoform (APS2) annotated in the Arabidopsis genome. This lack of activity is possibly due to the absence of essential amino acids involved in catalysis and/or in the binding of glucose-1-phosphate and 3-phosphoglycerate. Kinetic and regulatory properties of the different heterotetramers, together with sequence analysis has allowed us to make a distinction between sink and source enzymes, because the combination of different large subunits would provide a high plasticity to ADP-glucose pyrophosphorylase activity and regulation. This is the first experimental data concerning the role that all the ADP-glucose pyrophosphorylase isoforms play in a single plant species. This phenomenon could have an important role in vivo, because different large subunits would confer distinct regulatory properties to ADP-glucose pyrophosphorylase according to the necessities for starch synthesis in a given tissue.  相似文献   

3.
An operon encoding the P840 reaction center of Chlorobium limicola f.sp.thiosulfatophilum has been cloned and sequenced. It contains two structural genes coding for proteins of 730 and 232 amino acids. The first protein resembles the large subunits of the Photosystem I (PS I) reaction center. Putative binding elements for the primary donor, P840 in Chlorobium and P700 in PS I and for the acceptors A(o), A(1) and FeS-center X are conserved. The second protein is related to the PS I subunit carrying the FeS-centers A and B. Since all our efforts to find a gene for a second, large subunit failed, the P840 reaction center probably is homodimeric.  相似文献   

4.
A cDNA clone for the precursor form of the small subunit of wheat ribulose-bisphosphate carboxylase has been modified to allow the expression in Escherichia coli of a mature form of small subunit that lacks the transit peptide. Synthesis of the protein is controlled by a lac promoter, and translation is initiated from a lacZ ribosome binding site, giving rise to a small subunit with several beta-galactosidase amino acids fused to its N-terminus. A plasmid has been constructed that enables both wheat small subunits and maize large subunits to be synthesized in the bacterial cell, but using different promoters to allow independent expression of the rbcS and rbcL genes. When the small subunit is synthesized in the absence of the large subunit, it is found in the soluble fraction but the polypeptide is unstable and has a half-life of less than 15 min. Its size on sucrose gradients indicates a monomeric or dimeric form. When large subunit synthesis is induced in cells containing the small subunit, both subunits are found predominantly in the insoluble fraction and are fully stable for more than 120 min, suggesting that aggregation of the subunits may occur. The two subunits do not assemble together to form an active holoenzyme in vivo, even when nascent large subunits ware synthesized in a pool of mature small subunits. This indicates that other factors may be required to mediate the assembly of the higher plant enzyme.  相似文献   

5.
G蛋白亚单位基因家族研究进展   总被引:3,自引:0,他引:3  
Hu J  Hu YM 《生理科学进展》2003,34(2):131-135
G蛋白由α、β、γ三个亚单位组成异源三聚体。目前已发现16个α、6个β和12个γ基因。G蛋白亚单位基因家族相当保守并且原始,几乎所有G蛋白基因外显子-内含子连接均遵从GT-AG规则,并且各亚单位基因编码区内含子结构和位置显示出很高的保守性。多数G蛋白基因具有持家基因的特点。G蛋白基因在基因组中的分布存在着丛集的倾向,有5对α基因呈二联串连排列。  相似文献   

6.
7.
Quinlan RJ  Reinhart GD 《Biochemistry》2006,45(38):11333-11341
Differences between the crystal structures of inhibitor-bound and uninhibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphoenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits simultaneously containing two different extrinsic fluorophores in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel fluorescence correlation spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor binding because binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated.  相似文献   

8.
The amino acid sequence of the Escherichia coli catabolite gene activator protein has been fit into a 2.9-A resolution electron density map. Each subunit of the dimer consists of two structurally distinct domains. The larger NH2-terminal domain is seen to bind cyclic AMP and forms all of the contacts between the subunits. The cyclic AMP is completely buried between the interior of the "beta roll" structure of the large domain and a long alpha helix; it makes important hydrogen-bonding interactions with residues from both subunits. The guanidinium group of a buried Arg makes an internal salt link with the phosphate of cyclic AMP. The 6-amino group of adenine interacts simultaneously with both subunits. This interaction with both subunits and the fact that cyclic GMP and cyclic IMP do not activate catabolite gene activator protein suggest that the binding of cyclic AMP may alter the relative orientation of the two subunits, which in turn would change the structure of a DNA binding site that is presumed to span the two smaller domains. The distribution and nature of side chains in the small domain do not rule out the possibility that catabolite gene activator protein binds to left-handed B-DNA.  相似文献   

9.
10.
The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.  相似文献   

11.
12.
X-ray structure of nucleoside diphosphate kinase.   总被引:8,自引:0,他引:8  
The X-ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta-sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro----Ser substitution in Killer of prune (K-pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three-dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins.  相似文献   

13.
14.
F T Lau  A R Fersht 《Biochemistry》1989,28(17):6841-6847
A systematic study by site-directed mutagenesis has been conducted on the effector site of phosphofructokinase from Escherichia coli to delineate the role of side chains in binding the allosteric activator, GDP, and inhibitor, PEP, and to search for key residues in the allosteric transtion. Target residues were identified from the crystal structure of the enzyme-nucleoside diphosphate complex. It is found that both activator and inhibitor bind to the same set of amino acid side chains. Deletion of positively charged groups (Arg21, Arg25, Arg54, Arg154, and Lys213 mutated to alanine) weakens binding of both effectors by 2-3 kcal/mol, consistent with the disruption of charged hydrogen bonds. Residue Glu187, which is known from the crystal structure to bind the coordinated Mg2+ ion of GDP, is found to have a unique behavior on mutation and appears to be crucial in triggering the allosteric transition. All other residues mutated simply weaken binding of both PEP and GDP in a parallel manner. However, mutation of Glu----Ala187 reverses the roles of GDP and PEP, causing GDP to become an allosteric inhibitor and PEP an activator. Mutation of Glu----Gln187 has only a small effect on the binding of PEP, and both PEP and GDP are inhibitors. Studies are described in which mutations in different subunits of a tetrameric complex complement each other. The effector site is composed of residues from two subunits. In particular, Arg21 and Lys213 in each site are from different subunits. Mutations of either one of these residues abolishes activation by GDP of the homotetramer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The primary structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from the marine diatom Cylindrotheca sp. strain N1 has been determined. Unlike higher plants and green algae, the genes encoding the large and the small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase are chloroplast-encoded and closely associated (Hwang and Tabita, 1989). The rbcL and rbcS genes in strain N1 are cotranscribed and are separated by an intergenic region of 46 nucleotide base pairs. Ribosome binding sites and a potential promoter sequence were highly homologous to previously determined chloroplast sequences. Comparison of the deduced primary structure of the diatom large and small subunits indicated significant homology to previously determined sequences from bacteria; there was much less homology to large and small subunits from cyanobacteria, green algae, and higher plants. Although high levels of recombinant diatom large subunits could be expressed in Escherichia coli, the protein synthesized was primarily insoluble and incapable of forming an active hexadecameric enzyme. Edman degradation studies indicated that the amino terminus of the large subunit isolated from strain N1 was blocked, suggesting that the mechanism responsible for processing and subsequent assembly of large and small subunits resembles the situation found with other eucaryotic ribulose-1,5-bisphosphate carboxylase/oxygenase proteins, despite the distinctive procaryotic gene arrangement and sequence homology.  相似文献   

16.
17.
Penicillin acylase from E. coli: unique gene-protein relation.   总被引:16,自引:1,他引:15       下载免费PDF全文
The nucleotide sequence of the gene (pac) coding for penicillin G acylase from E. coli ATCC 11105 was determined and correlated with the primary structure of the two constituent subunits of this enzyme. The pac gene open reading frame consists of four structural domains: Nucleotide positions 1-78 coding for a signal peptide, positions 79-705 coding for the alpha subunit, positions 706-867 coding for a spacer peptide, and positions 868-2538 coding for the beta subunit. Plasmids were constructed which direct the synthesis of a pac gene product lacking the signal peptide, and the synthesis of the alpha subunit or the beta subunit. The following results were obtained: The two dissimilar subunits are processing products of a single precursor polypeptide; the spacer peptide is removed during processing; the precursor polypeptide lacking the signal sequence is accumulated in the cytoplasm; it is not processed proteolytically in the cytoplasm and it does not display enzyme activity. Processing, therefore, requires translocation through the cytoplasmic membrane; processing follows a distinct sequential pathway in vitro.  相似文献   

18.
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing.  相似文献   

19.
Intersubunit cooperativity in the NMDA receptor.   总被引:4,自引:0,他引:4  
M P Regalado  A Villarroel  J Lerma 《Neuron》2001,32(6):1085-1096
Opening of the NMDA receptor channel requires simultaneous binding of glutamate and glycine. Although the binding sites for each agonist are in different subunits, the presence of one agonist influences the binding of the other. We have localized regions in the S1 binding domain of both subunits required for the transmission of allosteric signals from the glutamate binding NR2A subunit to the glycine binding NR1 subunit. Three-dimensional modeling indicates that these segments are not directly involved in ligand binding, but likely form solvent-accessible loops protruding out of the binding pocket, making them suitable to relay interactions between adjacent subunits. Thus, these segments mediate negative allosteric coupling between the two subunit types that form the NMDA receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号