首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pricking or pressing an ovary can induce anther dehiscence in cleistogamous two-rowed barley in the absence of lodicule swelling. This response is considered to be inherited from a chasmogamous ancestor in which anther dehiscence is induced by the stimulus given to the pistil by the lodicule swelling, which causes floret opening.  相似文献   

2.
Six-rowed spike 1 (Vrs1) is a gene of major importance for barley breeding and germplasm management as it is the main gene determining spike row-type (2-rowed vs. 6-rowed). This is a widely used DUS trait, and has been often associated to phenotypic traits beyond spike type. Comprehensive re-sequencing Vrs1 revealed three two-rowed alleles (Vrs1.b2; Vrs1.b3; Vrs1.t1) and four six-rowed (vrs1.a1; vrs1.a2; vrs1.a3; vrs1.a4) in the natural population. However, the current knowledge about Vrs1 alleles and its distribution among Spanish barley subpopulations is still underexploited. We analyzed the gene in a panel of 215 genotypes, made of Spanish landraces and European cultivars. Among 143 six-rowed accessions, 57 had the vrs1.a1 allele, 83 were vrs1.a2, and three showed the vrs1.a3 allele. Vrs1.b3 was found in most two-rowed accessions, and a new allele was observed in 7 out of 50 two-rowed Spanish landraces. This allele, named Vrs1.b5, contains a ‘T’ insertion in exon 2, originally proposed as the causal mutation giving rise to the six-row vrs1.a2 allele, but has an additional upstream deletion that results in the change of 15 amino acids and a potentially functional protein. We conclude that eight Vrs1 alleles (Vrs1.b2, Vrs1.b3, Vrs1.b5, Vrs1.t1, vrs1.a1, vrs1.a2, vrs1.a3, vrs1.a4) discriminate two and six-rowed barleys. The markers described will be useful for DUS identification, plant breeders, and other crop scientists.  相似文献   

3.
4.
Mildew-resistant mutants were induced with sodium azide in three North American malting barley cultivars, two in the six-rowed Ursula (URS1 and URS2), one in the six-rowed Gertrud (GER1), and one in the two-rowed Prudentia (PRU1). Two of the mutants, URS1 and PRU1, showed complete resistance and were shown to have two new alleles at the mlo locus; these were designated, respectively, mlo31 and mlo32. Mutant URS2, showing partial resistance, was inherited as a dominant gene, but was not an allele at the Mla locus. The mean yield of each mutant was higher than that of its parental line, but yield levels varied across environments, although this was independent of the severity of the mildew attack. Other reasons, for example, the severity of the necrotic lesions in the mutants, may account for yield variations. The malting quality of the GER1 mutant proved similar to that of Gertrud, but both URS1 and URS2 showed lower malt extract than Ursula. This lower extract might be due to the smaller grain size of the mutants that could, in turn, result from necrotic lesions in the leaves, as implied by the effects on grain yield.Communicated by G. Wenzel  相似文献   

5.
To detect QTLs controlling traits of agronomic importance in rice, two elite homozygous lines 9024 and LH422, which represent the indica and japonica subspecies of rice (Oryza sativa), were crossed. Subsequently a modified single-seed-descent procedure was employed to produce 194 recombinant inbred lines (F8). The 194 lines were genotyped at 141 RFLP marker loci and evaluated in a field trial for 13 quantitative traits including grain yield. Transgressive segregants were observed for all traits examined. The number of significant QTLs (LOD 2.0) detected affecting each trait ranged from one to six. The percentage of phenotypic variance explained by each QTL ranged from 5.1% to 73.7%. For those traits for which two or more QTLs were detected, increases in the traits were conditioned by indica alleles at some QTLs Japonica alleles at others. No significant evidence was found for epistasis between markers associated with QTLs and all the other markers. Pleitropic effects of single QTLs on different traits are suggested by the observation of clustering of QTLs. No QTL for traits was found to map to the vicinity of major gene loci governing the same traits qualitatively. Evidence for putative orthologous QTLs across rice, maize, oat, and barley is discussed.  相似文献   

6.
Head shattering in barley (Hordeum vulgare L.) has two forms; brittle rachis and weak rachis. Brittle rachis is not observed in cultivated barley since all cultivars carry non-brittle alleles at one of the two complementary brittle rachis loci (Btr1;Btr2). Weak rachis causes head shattering in barley cultivars and may be confused with brittle rachis. Brittle rachis has been mapped to the chromosome 3 (3H) short arm while map position(s) of the weak rachis is unknown. Two major and a putative minor QTL for head shattering were mapped using the Steptoe × Morex doubled haploid line population. The largest QTL, designated Hst-3, located on the chromosome 3 (3H) centromeric region, is associated with a major yield QTL. The Steptoe Hst-3 region, when transferred into Morex, resulted in a substantial decrease in head shattering. High-resolution mapping of Hst-3 was achieved using isogenic lines. Brittle rachis was mapped with molecular markers and shown to be located in a different position from that of Hst-3. The second major QTL, designated Hst-2 S, is located on chromosome 2 S. This locus is associated with an environmentally sensitive yield QTL.  相似文献   

7.
8.
A heterozygous mutant for the two- and six-rowed character was isolated in the barley cultivar Igri through application of sodium azide to isolated microspore cultures and posterior regeneration. Six-rowed and two-rowed homozygotic plants were subsequently identified in the self-pollinated M2 progenies of the original heterozygous M1. Detailed molecular markers confirmed the isogenic nature of this recovered mutant and the original cultivar Igri. A comparative study of the anther culture response of this six-rowed induced mutant vs. diploid 'Igri' was performed to assess whether the two- or six-rowed gene influences anther culture response in barley through a pleiotropic effect or via linkage disequilibrium. No significant differences for any of the recorded variables throughout the in vitro regeneration process were detected between the 'Igri' six-rowed mutant and any of their two-rowed isogenic lines. This suggests that row-type association with anther culture response in barley cultivars is due to the effect of a tight linkage with other genes directly responsible for androgenic response.  相似文献   

9.

Key message

Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement.

Abstract

Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419?×?Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
  相似文献   

10.
Boron (B) is an essential micronutrient for higher plant, but toxic levels can seriously diminish grain yield in cereal crops by affecting root growth, and thus restricting water extraction from the subsoil. Amelioration of high concentrations in soils is expensive and not always feasible, so breeding for B tolerance is the most viable alternative. This article reports the marker-assisted (MAS) transfer of favourable alleles from an unadapted six-rowed barley (Hordeum vulgare L.) variety, Sahara 3771, into two-rowed lines adapted to southern Australia. During the backcrossing process, the SSR marker, EBmac679, located on chromosome 4H was used to control the target region in foreground selection, but no background selection was applied. Gene introgression was confirmed with 40 BC6F1-derived doubled haploid lines segregating for the SSR marker EBmac679. We used a combination of molecular and conventional assays to unequivocally classify the 40 BC6F1-derived DH lines as B tolerant or sensitive, and then compared their means for grain yield measured over 2 years and four locations. Results showed modest improvements in grain yield of lines carrying B tolerance genes at some B toxic environments, and negative impact at others. Our results also showed that malting quality profile was not adversely affected through the introgression of the B tolerance allele from Sahara 3771, allowing the newly developed material to be used by breeding programs without risk of a penalty on malt quality.  相似文献   

11.
Ability to genetically manipulate the loss of green colour during grain maturation has potentials for increasing productivity, disease resistance, and drought and heat tolerance in crop plants. Two doubled haploid, two-rowed barley populations (Vlamingh × Buloke and VB9524 × ND11231*12) were monitored over 2 years for loss of green colour during grain filling using a portable active sensor. The aims were to determine the genomic regions that control trait heritability by quantitative trait locus (QTL) analysis, and to examine patterns of QTL-environment interactions under different conditions of water stress. In the Vlamingh × Buloke cross, broad-sense heritability estimate for loss of green colour (measured as the difference in sensor readings taken at anthesis and maturity, ?SRI) was 0.68, and 0.78 for the VB9524 × ND11231*12 population. In the VB9524 × ND11231*12 population, rapid loss of green colour was positively associated with grain yield and percent plump grains, but in the Vlamingh × Buloke population, a slower loss of green colour (low ?SRI) was associated with increased grain plumpness. With the aid of a dense array of single nucleotide polymorphisms (SNPs) and EST-derived SSR markers, a total of nine QTLs were detected across the two populations. Of these, a single major locus on the short arm of barley chromosome 5H was consistently linked with trait variation across the populations and multiple environments. The QTL was independent of flowering time and explained between 5.4 and 15.4 % of the variation observed in both populations, depending on the environment, and although a QTL × E interaction was detected, it was largely due to a change in the magnitude of the effect, rather than a change in direction. The results suggest that loss of green colour during grain maturation may be under the control of a simple genetic architecture, but a careful study of target populations and environments would be required for breeding purposes.  相似文献   

12.
QTLs for grain carbon isotope discrimination in field-grown barley   总被引:4,自引:4,他引:0  
In several crops including cereals, carbon isotope discrimination (Delta) has been associated with drought tolerance in terms of water-use efficiency and yield stability in drought-prone environments. By using a complete genetic map generated from 167 recombinant inbred lines from a cross between Tadmor and Er/Apm, QTLs associated with grain Delta have been detected in barley grown in three Mediterranean field environments, two differing only in water availability. Ten QTLs were identified: one was specific to one environment, two presented interaction with the environment, six presented main effects across three or two environments and one presented both effects. Heading date did not contribute to the environment (E) and G x E effects acting on Delta. Seasonal rainfall and the ratio of rainfall to evapo-transpiration made large contributions to the environmental effect, but their influence on G x E was weaker. Eight QTLs for Delta co-located with QTLs for physiological traits related to plant water status and/or osmotic adjustment, and/or for agronomic traits previously measured on the same population. Some perspectives in terms of characterising drought tolerance are evoked.  相似文献   

13.
In order to identify quantitative trait loci (QTLs) controlling agronomic trait variation and their consistency under Mediterranean conditions in barley, a progeny of 167 recombinant inbred lines (RILs) and the parents Tadmor and Er/Apm, originating from the Mediterranean basin, were grown under Mediterranean conditions in 1995, 1996, 1997 and 1999. For the 2 first years (M95 and G96), one replicate was grown, but for the latter (M97 and M99) two rainfed (rain) and two irrigated (ir) replicates were produced. M95, G96, M97rain, M97ir, M99rain and M99ir were considered as six different environments and were compared in terms of their meteorological conditions and water supply. Grain yield and yield components were assessed, as well as heading date and plant height. Highly significant differences were noted between environments. QTLs were obtained from each environment separately and from a multiple environment analysis (simple interval mapping and simplified composite interval mapping). Despite heterogeneity between environments, numerous QTLs were common to several environments. This was particularly true for traits like plant height and thousand-grain weight. The most reliable QTLs which explained the largest part of the phenotypic variation were obtained for plant height on chromosomes 3 (3H) and 6 (6H). The multiple-environment analysis provided an opportunity to identify consistent QTLs for agronomic traits over six Mediterranean environments. A total of 24 consistent QTLs were detected. Out of these, 11 presented main effects, seven presented QTL×E interaction, and six presented both effects. In addition, 18 of the consistent QTLs were common to other published work and six seemed specific to this study. These latter QTLs could be involved in Mediterranean adaptive specificities or could be specific to the studied genetic background. Finally, when the rainfed and the irrigated environments of M97 were considered separately, a total of 16 QTLs presenting main effects over the two water conditions were identified, whereas five QTLs seemed dependent on the water conditions. Received: 31 January 2001 / Accepted: 19 February 2001  相似文献   

14.
Genes/QTLs affecting flood tolerance in rice   总被引:8,自引:1,他引:7  
The adaptation of deepwater rice to flooding is attributed to two mechanisms, submergence tolerance and plant elongation. Using a QTL mapping study with replicated phenotyping under two contrasting (water qualities) submergence treatments and AFLP markers, we were able to identify several genes/QTLs that control plant elongation and submergence tolerance in a recombinant inbred rice population. Our results indicate that segregation of rice plants in their responses to different flooding stress conditions is largely due to the differential expression of a few key elongation and submergence tolerance genes. The most important gene was QIne1 mapped near sd-1 on chromosome 1. The Jalmagna (the deepwater parent) allele at this locus had a very large effect on internal elongation and contributed significantly to submergence tolerance under flooding. The second locus was a major gene, sub1(t), mapped to chromosome 9, which contributed to submergence tolerance only. The third one was a QTL, QIne4, mapped to chromosome 4. The IR74 (non-elongating parent) allele at this locus had a large effect for internal elongation. An additional locus that interacted strongly with both QIne1 and QIne4 appeared near RG403 on chromosome 5, suggesting a complex epistatic relationship among the three loci. Several QTLs with relatively small effects on plant elongation and submergence tolerance were also identified. The genetic aspects of these flooding tolerance QTLs with respect to patterns of differential expression of elongation and submergence tolerance genes under flooding are discussed. Received: 13 December 1999 / Accepted: 14 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

15.
Preharvest sprouting (PHS) can be a problem in barley (Hordeum vulgare L.) especially malting barley, since rapid, uniform, and complete germination are critical. Information has been gained by studying the genetics of dormancy (measured as germination percentage, GP). The objective of this study was to determine if the quantitative trait loci (QTLs) discovered in previous research on dormancy are related to PHS. PHS was measured as sprout score (SSc) based on visual sprouting in mist chamber-treated spikes and as alpha-amylase activity (AA) in kernels taken from mist chamber-treated spikes that showed little or no visible sprouting. GP was also measured. All traits were measured at 0 and 14 days after physiological maturity. Evaluation of the spring six-row cross, Steptoe (dormant)/Morex (non-dormant) doubled haploid mapping population grown in greenhouse and field environments revealed QTL regions for SSc, AA, and GP on five, four, and six of the seven barley chromosomes, respectively. In total, seven and eight regions on five and six chromosomes had effects ranging from 4 to 31% and 3 to 39% on PHS and dormancy, respectively. One chromosome 3H and three chromosome 5H QTLs had the greatest effects. All PHS QTLs coincide with known dormancy QTLs, but some QTLs appear to be more important for PHS than for dormancy. Key QTLs identified should benefit breeding of barley for a suitable balance between PHS and dormancy.  相似文献   

16.
17.
By using a high-density AFLP marker linkage map, six QTLs for partial resistance to barley leaf rust (Puccinia hordei) isolate 1.2.1. have been identified in the RIL offspring of a cross between the partially resistant cultivar ’Vada’ and the susceptible line L94. Three QTLs were effective at the seedling stage, and five QTLs were effective at the adult plant stage. To study possible isolate specificity of the resistance, seedlings and adult plants of the 103 RILs from the cross L94×’Vada’ were also inoculated with another leaf rust isolate, isolate 24. In addition to the two QTLs that were effective against isolate 1.2.1. at the seedling stage, an additional QTL for seedling resistance to isolate 24 was identified on the long arm of chromosome 7. Of the eight detected QTLs effective at the adult plant stage, three were effective in both isolates and five were effective in only one of the two isolates. Only one QTL had a substantial effect at both the seedling and the adult plant stages. The expression of the other QTLs was developmental-stage specific. The isolate specificity of the QTLs supports the hypothesis of Parlevliet and Zadoks (1977) that partial resistance may be based on a minor-gene-for-minor-gene interaction. Received: 16 February 1999 / Accepted: 20 February 1999  相似文献   

18.
A quantitative trait locus (QTL) analysis was performed on the size and shape of the mandible in F2 mice between KK-A y and C57BL/6 J strains and the effect of the A y allele on the morphology of the mandible was analyzed. A total of 13 measurements were taken on each right mandible. By means of discriminant and canonical discriminant analyses, KK-A y males and KK males were exactly discriminated from each other. In contrast to its known effects on body weight, the A y allele reduced the overall size of the mandible. QTL analysis of the 13 measurements and on three principal components extracted from these measurements identified multiple QTLs. When F2 a/a and F2 A y /a were analyzed separately, 11 significant main-effect QTLs were identified in F2 a/a, whereas only two QTLs were identified in F2 A y /a. Although four significant interactions were identified, all were in F2 a/a. The A y allele thus made the difference in the size and shape of the mandible between strains obscure. Among mandible QTLs, those on Chrs 5 (Mssq6 and Mssq7) and 15 (Mssq14) were important. Mssq6 had an effect on the height of the posterior mandible. Mssq7 had an effect on mandible length. Mssq14 had an effect on the height of the anterior and posterior mandible. Mssq7 and Mssq14 also had an effect on the overall size. Thus, mandible QTLs have distinct and characteristic sites of action. Therefore, mandible morphology will be determined largely by the combination of these QTLs.  相似文献   

19.
The α–amylase activity of cultivated barley is critically important to the brewing industry. Here, we surveyed variation in malt α–amylase activity in 343 cultivated barley accessions from around the world. Population structure analysis based on genotype data at 1536 SNPs clustered these accessions into two groups, one comprising South-East Asian and Ethiopian accessions and one group containing the other accessions. A genome-wide association study identified significant quantitative trait loci (QTLs) for α–amylase activity on all seven chromosomes of barley. Accessions showing high and low α–amylase activity were crossed with the high-quality Japanese malting barley cv. Harun Nijo to develop F2 mapping populations. We identified two QTLs on chromosome 6H in a cross between Haruna Nijo (high activity) × Weal (highest activity). Single QTLs were identified each on 3H, 4H, and 5H from a cross between Haruna Nijo (high activity) × VLB-1 (low activity), indicating that the high α–amylase activity in Haruna Nijo might be derived from loci on these chromosomes. The addition of the high α–amylase activity QTL alleles from chromosome 6H in cv. Weal further increased the α–amylase activity conferred by alleles of Haruna Nijo. These results demonstrate that a target haplotype can be successfully improved using a strategy comprising diversity analysis of ex situ collections followed by introducing effective new alleles.  相似文献   

20.
A breeding objective for the malting barley industry is to produce lines with softer, plumper grain containing moderate protein content (9–12%) as they are more likely to imbibe water readily and contain more starch per grain, which in turn produces higher levels of malt extract. In a malting barley mapping population, ‘Arapiles’ × ‘Franklin’, the most significant and robust quantitative trait locus (QTL) for endosperm hardness was observed on the short arm of chromosome 1H, across three environments over two growing seasons. This accounted for 22.6% (Horsham 2000), 26.8% (Esperance 2001), and 12.0% (Tarranyurk 2001) of the genetic variance and significantly increased endosperm hardness by 2.06–3.03 SKCS hardness units. Interestingly, Arapiles and Franklin do not vary in Ha locus alleles. Therefore, this region, near the centromere on chromosome 1H, may be of great importance when aiming to manipulate endosperm hardness and malting quality. Interestingly, this region, close to the centromere on chromosome 1H, in our study, aligns with the region of the genome that includes the HvCslF9 and the HvGlb1 genes. Potentially, one or both of these genes could be considered to be candidate genes that influence endosperm hardness in the barley grain. Additional QTLs for endosperm hardness were detected on chromosomes 2H, 3H, 6H and 7H, confirming that the hardness trait in barley is complex and multigenic, similar to many malting quality traits of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号