首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear.  相似文献   

2.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

3.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

4.
A cattle-drinking pool in nature reserve "Zwin" on the Belgian coast contained free-living third-stage infective filaroid juveniles. These juveniles clearly differ morphologically from all known nematodes. Morphological and molecular analyses indicate a position within the Filaroidea. The aberrant biology of this nematode, namely, a free-living stage in an aquatic environment, is unknown within this superfamily, and the evolution of the parasitic phenotype to a free-living state is generally thought to be unlikely. However, the obtained placement in the small subunit molecular phylogenetic tree suggests that this free-living stage is most likely a secondary adaptation. It is reasonable to assert that nematodes with complex life cycles still have the genetic potential for a reversion from parasitism to a (partial) free-living stage.  相似文献   

5.
Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.  相似文献   

6.
Germline transformation of a parasitic nematode of mammals has proven to be an elusive goal. We report here the heritable germline transformation of Parastrongyloides trichosuri, a nematode parasite whose natural hosts are Australian possums of the genus Trichosurus. This parasite can undergo multiple free-living life cycles and these replicative cycles can be maintained indefinitely in the laboratory. Transformation was achieved by microinjection of DNA into the ovary syncytium of either free-living or parasitic adult females. By selecting for the transgenic progeny of successive free-living life cycles, it was possible to establish and maintain transgenic lines. All three transgenic lines tested were shown capable of establishing patent infections in possums and to transmit the functional transgene to their progeny. The transgene, driven by the Pt hsp-1 promoter, was constitutively expressed in intestinal cells at all stages of both parasitic and free-living life cycles, although gene silencing appears to occur in some transgenic progeny. This is the first report of heritable transgenesis in a parasitic nematode of a mammal and we discuss a variety of previously inaccessible experimental avenues that will now be possible with this powerful model system.  相似文献   

7.
The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage–specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage–specific data.  相似文献   

8.
Our current understanding on how pathogens evolve relies on the hypothesis that pathogens' transmission is traded off against host exploitation. In this study, we surveyed the possibility that trade-offs determine the evolution of the bacterial insect pathogen, Xenorhabdus nematophila. This bacterium rapidly kills the hosts it infects and is transmitted from host cadavers to new insects by a nematode vector, Steinernema carpocapsae. In order to detect trade-offs in this biological system, we produced 20 bacterial lineages using an experimental evolution protocol. These lineages differ, among other things, in their virulence towards the insect host. We found that nematode parasitic success increases with bacteria virulence, but their survival during dispersal decreases with the number of bacteria they carry. Other bacterial traits, such as production of the haemolytic protein XaxAB, have a strong impact on nematode reproduction. We then combined the result of our measurements with an estimate of bacteria fitness, which was divided into a parasitic component and a dispersal component. Contrary to what was expected in the trade-off hypothesis, we found no significant negative correlation between the two components of bacteria fitness. Still, we found that bacteria fitness is maximized when nematodes carry an intermediate number of cells. Our results therefore demonstrate the existence of a trade-off in X. nematophila, which is caused, in part, by the reduction in survival this bacterium causes to its nematode vectors.  相似文献   

9.
10.
Information is presented that can be used by the working parasitologist to identify the type of insect parasitic nematode he has found. The importance of obtaining identifiable adult nematode specimens and using certain fixative solutions is stressed. Tables showing a current classification of the three groups of insect parasitic nematodes—the sphaerulariids, the mermithids, and the neoaplectanids are given, along with numerous photographs and line drawings of those nematodes most commonly found parasitic in insects. Future efforts should be directed toward more field experimentation and the activation of the private sector to mass produce these parasites.  相似文献   

11.
Daubaylia potomaca is a parasitic nematode that exhibits a direct life cycle using planorbid snails as their only host. Within the snail host Helisoma anceps , all developmental stages of the parasite are present at any given time. The nematode has an unusual life cycle, with the adult female being the infective stage rather than the third-stage larvae (L(3)), as is commonly the case in many other parasitic nematode life cycles. In addition, length analysis showed that L(1) and L(2) were not present in tissues, suggesting that larvae hatch from eggs as the L(3). Previous studies by other investigators show that adult females abandon Biomphalaria glabrata at some point between 3 and 9 days of host death; in the present study, adult female D. potomaca leave H. anceps up to 59 days (and a mean of 14.8 days) before host death. This observation indicates a striking physiological difference between an experimental and a natural host for the parasite.  相似文献   

12.
A sensory code for host seeking in parasitic nematodes   总被引:1,自引:0,他引:1  
Parasitic nematode species often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many such behaviors are triggered by host odors, but little is known about either the specific olfactory cues that trigger these behaviors or the underlying neural circuits. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some devastating human- and plant-parasitic nematodes. We compare the olfactory responses of Heterorhabditis and Steinernema infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages. The broad host range of these parasites results from their ability to respond to the universally produced signal carbon dioxide (CO(2)), as well as a wide array of odors, including host-specific odors that we identified using thermal desorption-gas chromatography-mass spectroscopy. We find that CO(2) is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults, and we identify a sensory neuron that mediates CO(2) response in both parasitic and free-living species, regardless of whether CO(2) is attractive or repulsive. The parasites' odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism.  相似文献   

13.
In this paper, we investigate the level of specialization of the symbiotic association between an entomopathogenic nematode (Steinernema carpocapsae) and its mutualistic native bacterium (Xenorhabdus nematophila). We made experimental combinations on an insect host where nematodes were associated with non-native symbionts belonging to the same species as the native symbiont, to the same genus or even to a different genus of bacteria. All non-native strains are mutualistically associated with congeneric entomopathogenic nematode species in nature. We show that some of the non-native bacterial strains are pathogenic for S. carpocapsae. When the phylogenetic relationships between the bacterial strains was evaluated, we found a clear negative correlation between the effect a bacterium has on nematode fitness and its phylogenetic distance to the native bacteria of this nematode. Moreover, only symbionts that were phylogenetically closely related to the native bacterial strain were transmitted. These results suggest that co-evolution between the partners has led to a high level of specialization in this mutualism, which effectively prevents horizontal transmission. The pathogenicity of some non-native bacterial strains against S. carpocapsae could result from the incapacity of the nematode to resist specific virulence factors produced by these bacteria.  相似文献   

14.
The parasitic nematode Strongyloides ratti has a complex life cycle. The progeny of the parasitic females can develop into three distinct morphs, namely directly developing infective third-stage larvae (iL3s), free-living adult males and free-living adult females. We have analysed of the effect of host immune status (an intra-host factor), environmental temperature (an extra-host factor) and their interaction on the proportion of larvae that develop into these three morphs. The results are consistent with the developmental decision of larvae being controlled by at least two discrete developmental switches. One is a sex-determination event that is affected by host immune status and the other is a switch between alternative female morphs that is affected by both host immune status and environmental temperature. These findings clarify the basis of the life cycle of S. ratti and demonstrate how such complex life cycles can result from a combination of simple developmental switches.  相似文献   

15.
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.  相似文献   

16.
The polyamine and amino acid composition of the mermithid nematode, Romanomermis culicivorax, and its host, Aedes aegypti, was determined. Putrescine, spermidine, spermine, cadaverine and two acetylated spermidine derivatives were present in parasitic juveniles, newly-emerged post-parasites, and eggs of R. culicivorax. Whole insect homogenates of fourth-instar A. aegypti contained the same array of polyamines, except that the putrescine:spermidine ratio was the inverse of that in parasitic R. culicivorax. Polyamines and amino acids were in greater concentrations in the nematode eggs than in other developmental stages investigated. Both the host and nematode possess the biosynthetic capacity for polyamine biosynthesis, as evidenced by measurable activities of ornithine decarboxylase in the host''s tissues and the nematode''s free-living stages.  相似文献   

17.
Specific host–parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.  相似文献   

18.
  1. Brood parasitism is a breeding strategy adopted by many species of cuckoos across the world. This breeding strategy influences the evolution of life histories of brood parasite species.
  2. In this study, we tested whether the degree on diet specialization is related to the breeding strategy in cuckoo species, by comparing brood parasite and nonparasite species. We measured the gradient of diet specialization of cuckoos, by calculating the Gini coefficient, an index of inequality, on the multiple traits describing the diet of species. The Gini coefficient is a measure of statistical dispersion on a scale between 0 and 1, reflecting a gradient from low to high specialization, respectively. First, we tested the strength of the phylogenetic signal of diet specialization index among cuckoo species worldwide. Then, we ran phylogenetic generalized least square (PGLS) models to compare diet specialization, distribution range, and body mass of parasitic and nonparasitic cuckoo species, considering the phylogenetic signal of data.
  3. After adjusting for the phylogenetic signal of the data and considering both, species distribution range and species body mass, brood parasitic cuckoos were characterized by higher diet specialization than nonbrood parasitic species. Brood parasitic species were also characterized by a larger breeding distribution range than nonparasitic species.
  4. The findings of this study provide an additional understanding of the cuckoos’ ecology, relating diet and breeding strategies, information that could be important in conservation ecology.
  相似文献   

19.
The persistent finding of clades endemic to the southern continents (Afrotheria and Xenarthra) near the base of the placental mammal tree has led molecular phylogeneticists to suggest an origin of Placentalia, the crown group of Eutheria, somewhere in the southern continents. Basal splits within the Placentalia have then been associated with vicariance due to the breakup of Gondwana. Southern-origin scenarios suffer from several problems. First, the place of origin of Placentalia cannot be reconstructed using phylogenetic reasoning without reference to outgroups. When available outgroups are considered, a Laurasian origin is most parsimonious. Second, a model of pure vicariance would require that basal placental splits occurred not with the breakup of Gondwana, but of Pangea in the Late Triassic—Early Jurassic. This event long preceded even the oldest molecular divergence estimates for the Placentalia and was coeval only with the earliest mammals in the fossil record. Third, a problem with the number of dispersal events that would be required emerges under different southern-origin scenarios. In considering the geographic distribution of the major placental clades at their first appearance (mostly Early Cenozoic), it becomes clear that a Laurasian center of origin would require fewer dispersal events. Southern-origin models would require at least twice the number of dispersal events in comparison with a model of Laurasian origins. This number of required dispersal events increases if extinct groups of placental mammals are also considered. Results are similar assuming a morphology-based phylogeny. These facts, along with earlier findings speaking against a major placental radiation deep in the Cretaceous without leaving fossil evidence, suggest an origin of Placentalia somewhere in Laurasia with few supraordinal splits occurring before the last 5–10 million years of the Cretaceous.  相似文献   

20.
In the review, the life cycles and mutualistic relations within the nematode-bacteria associations are analyzed: nematodes Bursaphelenchus xylophilus (PWN) with bacteria Pseudomonas fluorescens, Bacillus spp., Burkholderia arboris; entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis with bacteria of the genera Xenorhabdus and Photorhabdus. The life cycles of PWN and EPN show traits of the primary detrital trophism. Both cycles include invasion of the living host and are completed with death of the host, which is an obligate condition for dispersal of the nematodes and their associated bacteria. Nematodes and bacteria stimulate each other to reproduce fast; the diverse forms of their interactions are considered, including direct and indirect ones (via the plant or insect host). Bacteria of both mutualistic associations produce siderophores and antibiotics that prevent reproduction of other pathogenic and putrefactive microorganisms. Ectosymbiotic bacteria of PWN may be recruited into the association from among the inhabitants of the mucous cover of the nematode body, as well as from the pathogenic bacterial biota of local conifers; thus the PWN and bacteria are facultative synergists in the phytopathogenic process. Endosymbiotic bacteria of EPN are not capable of independent life; they have developed obligate associations with highly specific nematode hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号